组织靶向:为了对大多数疾病状况提供有效治疗,到达中枢神经系统 (CNS) 是 ERT 的主要挑战之一。事实上,静脉输注的重组酶无法穿过血脑屏障 (BBB) 进入 CNS [13] 。用于 ERT 的重组酶等大极性分子很难穿过 BBB [14] ,而通过与针对脑内皮受体(例如胰岛素或转铁蛋白受体)的单克隆抗体融合而显示出增加脑内皮细胞转胞吞作用的酶目前正在进行 MPS 的临床研究 [15] 。ERT 仅被临床批准用于治疗极少数疾病 [表 1]。对于临床批准的 ERT,主要靶向是外周部位。一旦进入循环,施用的酶的半衰期很短。施用的重组酶大部分分布到内脏器官 [5,6] 。
血色素沉着症是一种铁元货物的遗传性疾病,它是由于肝素 - 有洛普尔素轴的遗传缺陷引起的,具有可变的渗透率,因此是临床异质性。在肝,心脏,胰腺,关节和内分泌器官的水平上铁不受控制的吸收和过载风险。患者有肝硬化和肝癌进化的风险。在症状,家族史或血清铁标记升高的情况下,应怀疑在转铁蛋白饱和结束时。诊断对于临床表现和血清铁标记的意外意外挑战。有几个基因涉及,但是HFE是最经常受到影响的;与铁超负荷诊断相关的纯种同志C282Y;其他遗传变异可能需要通过磁共振成像或肝活检进行折衷研究。优先治疗是静脉切开术,或者是红细胞发作或铁螯合。它们具有高发病率和死亡率,可以随着治疗的开始而降低。
尽管会导致轻微的铁超载,但与典型的血色素沉着症相比,其发病率却更高。一名 60 岁的贝尔氏麻痹症患者,经进一步问诊,出现全身瘙痒、便秘和神经精神症状。此外,检查还发现轻度黄疸、齿轮状强直和面部色素沉着。检查显示患者具有 Child B 肝硬化的特征,并伴有高转铁蛋白饱和度 (TSAT) 和高铁蛋白血症,经超声确认。基因检测显示纯合 H63D 突变。他接受了铁蛋白、TSAT、血红蛋白引导下的静脉切开术和铁螯合疗法(地拉罗司)治疗,同时进行对症治疗。他的临床和生化表现显著改善,强调了在诊断血色素沉着症时进行基因检测的必要性,并确保生化指导治疗。
图3:这无疑是本文中最重要的信息之一。i认识到糖基化总体上受到影响,但在这个水平上,通过质谱来深入分析患者细胞的N-糖基化状态至关重要,以了解这种缺陷,戈尔吉帕蒂和糖基化之间的联系。作者使用WGA确认其糖基化缺陷。我会建议他们重复SNA和MAA的实验,这些实验是更具体的凝集蛋白。作者检测到apociii糖基化缺陷,而在转铁蛋白中无。在O-Glycans上发生的溶苷位在Alpha 2,3中,而对于N-Glycans,这主要是Alpha 2,6。缺陷可能只会影响α2,3溶性。使用两个凝集素SNA和MAA的使用应回答这个问题,但这就是为什么通过质谱法中患者细胞的N-糖基化状态很重要。这也可以在本文第二部分中使用的RPE突变细胞中完成。
目的:本研究旨在开发一个装饰有适体(APS)和转铁蛋白(TF)的二元纳米夹纸系统,并装有daunorubicin(drn)和叶黄素(LUT)(LUT)来治疗白血病。方法:分别设计和合成寡核苷酸AP和含TF的配体。AP装饰的DRN纳米颗粒(AP-DRN NP)和TF-LUT NP。通过AP-DRN NPS和TF-LUT NP的自组装制备AP和LUT-CORODAD的DRN和LUT-CORODAR-CORODAD的纳米递送系统(AP/TF-DRN/LUT NPS)。与单个配体装饰,单个药物 - 负载和自由药的配方相比,在白血病细胞系和含细胞小鼠模型上评估了系统的体外和体内效率。结果:AP/TF-DRN/LUT NP是球形和纳米化的(187.3±5.3 nm),并装有约85%的药物。AP/TF-DRN/LUT NP的体外细胞毒性高于单个配体装修的细胞毒性。 双药物载有AP/TF-DRN/LUT NP的肿瘤细胞抑制比单一药物抑制更高,这表现出两种药物的协同作用。 ap/tf-drn/lut nps达到了最有效的抗血性活性和体内毒性。 结论:本研究表明,由于这两种药物在该系统中的协同作用,AP/TF-DRN/LUT NP是一种有前途的药物分娩系统,用于对白血病的靶向治疗。 该系统的局限性包括在大规模生产过程中的稳定性以及从长凳到床边的应用。 关键字:急性髓细胞白血病,daunorubicin,Luteolin,Aptamer,Transferrin,nanodrug-delivery SystemAP/TF-DRN/LUT NP的体外细胞毒性高于单个配体装修的细胞毒性。双药物载有AP/TF-DRN/LUT NP的肿瘤细胞抑制比单一药物抑制更高,这表现出两种药物的协同作用。ap/tf-drn/lut nps达到了最有效的抗血性活性和体内毒性。结论:本研究表明,由于这两种药物在该系统中的协同作用,AP/TF-DRN/LUT NP是一种有前途的药物分娩系统,用于对白血病的靶向治疗。该系统的局限性包括在大规模生产过程中的稳定性以及从长凳到床边的应用。关键字:急性髓细胞白血病,daunorubicin,Luteolin,Aptamer,Transferrin,nanodrug-delivery System
平台由与转铁蛋白受体 1 结合的抗原结合片段组成,该片段与寡核苷酸偶联。我们证明,单剂量的小鼠特异性 FORCE–M23D 偶联物可增强 mdx 小鼠中外显子跳跃 PMO (M23D) 的肌肉递送,实现剂量依赖性和稳健的外显子跳跃以及持久的肌营养不良蛋白恢复。FORCE–M23D 诱导的肌营养不良蛋白表达在单剂量 30 mg/kg PMO 等效剂量下分别达到股四头肌、胫骨前肌、腓肠肌、膈肌和心脏中野生型水平的 51%、72%、62%、90% 和 77% 的峰值。缩短的肌营养不良蛋白定位于肌膜,表明功能性蛋白质的表达。相反,单剂量 30 mg/kg 未结合 M23D 显示出较差的肌肉传递,导致外显子跳跃和肌营养不良蛋白表达处于边缘水平。重要的是,与 FORCE-M23D 相比,FORCE-M23D 治疗可改善功能结果
- 血细胞计数、分类血细胞计数 - 血型、抗体筛查测试 - 电解质(钠、钾、钙)、肌酐(包括计算的 GFR)、尿素、尿酸、LDH、GPT、GOT、铁状态(铁蛋白、转铁蛋白饱和度)、糖化血红蛋白 - proBNP 或 BNP、肌钙蛋白 T 或 I - 25-羟基胆钙化醇(检测维生素 D 缺乏症) - 肾功能不全或高钙血症时:1,25-二羟基胆钙化醇(维生素 D 代谢) - 总蛋白和白蛋白、免疫球蛋白定量(IgG、IgA、IgM)、β2-微球蛋白 - 血清蛋白电泳(SPEP)和 M 蛋白定量、免疫固定 - 游离 κ 和 λ 轻链、轻链比率 - 冷球蛋白 - 冷凝集素 - 疫苗接种状况、HIV 和肝炎血清学 - 维生素 B12、叶酸、促红细胞生成素(肾功能不全的情况下) - 通过 FACS 分析进行表面标志物检测(仅适用于白血病病程) - 出血倾向的情况下:vWF Ag 和活性 + 因子 VIII 测定(继发性 VW 综合征?)
在美国东北部的一个大型学术医疗中心,为无血型菌,Inte Grating ESA,血小板蛋白受体激动剂(TPO-RAS)(TPO-RAS)和标准程序设计了指南,以减轻血小板减少症和贫血风险。被认为有资格进行移植并确定适当的ABO兼容供体后,随后进行了计划。预处理红细胞的产生最佳效果可以防止抗溶质后严重的贫血,从而对包括铁,B 12和叶酸不足进行全面评估营养性贫血。临床医生为B 12不足和口服叶酸开处方肠胃外蓝葡萄糖,如果有叶酸不足的证据。移植团队获得了铁研究,包括铁蛋白,转铁蛋白饱和度和总铁结合能力;铁缺乏症患者接受IV铁,并进行重新测试以确保达到目标水平。这种机构更喜欢静脉铁对口服配方,因为口服铁通常无法提供足够的铁来纠正铁缺乏的红细胞生成(Beck等,2020; Coltoff等,2019; Deloughery,2020)。
背景:化学治疗剂的安全有效递送对于神经胶质瘤治疗至关重要。然而,胶质瘤的化学疗法极具挑战性,因为血脑屏障(BBB)严格阻止药物到达肿瘤区域。材料和方法:合成TFR-T12肽修饰的PEG-PLA聚合物,以递送紫杉醇(PTX)进行神经胶质瘤治疗。tfr在脑毛细管内皮细胞和神经胶质瘤细胞上显着表达。因此,TFR-T12肽修饰的胶束可以越过BBB系统并靶向神经胶质瘤细胞。结果:TFR-T12-PEG-PLA/PTX聚合物胶束(TFR-T12-PMS)可以被肿瘤细胞迅速吸收,并有效地遍历BBB单层。TFR-T12-PMS可以有效地抑制体外U87MG细胞的增殖,而带有紫杉醇的TFR-T12-PMS比未经改装的PMS提出了更好的抗细胞瘤效应,并具有长时间的裸小鼠胶原瘤的中位生存期,裸鼠的中位生存期长。结论:TFR-T12-PMS可以有效地克服BBB屏障和以胶质性胶质瘤为靶向的药物的递送,从而验证其在改善多种形式的治疗结果方面的潜力。关键词:聚合物胶束,转铁蛋白受体,BBB转胞胞菌作用,胶质母细胞瘤多形,靶向递送
摘要:DNA-胶原蛋白复合物的不同方式主要用于基因递送研究。但是,很少有研究研究这些复合物作为生物活性支架的潜力。此外,尚无研究表征由自组装DNA宏结构和胶原蛋白的相互作用形成的DNA-胶原蛋白复合物。为了进行这项研究,我们在此报告了由序列特异性,自组装的DNA宏结构和胶原蛋白I的相互作用形成的新型生物活性支架的制造。DNA和胶原的变化导致高度相互交织的纤维骨架与不同的纤维厚度的高度相互交织的摩尔比。形成的支架是生物相容性的,并作为细胞生长和增殖的软基质表示。在DNA/胶原蛋白支架上培养的细胞促进了转铁蛋白的细胞摄取增强,并且进一步研究了DNA/胶原支架诱导神经元细胞分化的潜力。与对照组相比,DNA/胶原支架促进了具有广泛神经突的前体细胞的神经元分化。这些新型的,自组装的DNA/胶原支架可以作为开发各种生物活性支架的平台,并在神经科学,药物递送,组织工程和体外细胞培养中具有潜在的应用。