摘要 先前的研究使用功能性磁共振成像确定了与感觉处理敏感性 (SPS) 相关的大脑区域,SPS 是一种拟议的正常表型特征。为了进一步验证 SPS、从解剖学上描述它的特征并测试评估轴突特性的方法在心理学中的实用性,本研究将 SPS 代理问卷分数(已根据神经质进行调整)与扩散张量成像 (DTI) 测量值相关联。研究对象为来自人类连接组计划的参与者 (n = 408)。体素分析表明,平均和径向扩散率与左右胼胝体下束和前腹侧扣带束以及胼胝体右侧小钳子中的 SPS 分数呈正相关,所有额叶皮质区域通常都与情绪、动机和认知有关。进一步分析显示,右侧和左侧腹内侧前额叶皮质的整个内侧额叶皮质区域存在相关性,包括上纵束、下额枕束、钩束和弓状束。各向异性分数与右侧运动前/运动/体感/缘上回区域白质 (WM) 的 SPS 评分呈负相关。感兴趣区域 (ROI) 分析显示,楔前叶和下额回 WM 的效应大小较小(- 0.165 至 0.148)。其他 ROI 效应存在于背侧、腹侧视觉通路和初级听觉皮质中。结果显示,在一大群参与者中,轴突微结构差异可以通过 SPS 特征来识别,这些特征很细微,并且在典型行为范围内。结果表明,患有 SPS 的人感觉处理能力增强可能受到特定皮质区域 WM 微结构的影响。尽管之前的 fMRI 研究已经确定了大部分这些区域,但 DTI 结果将焦点放在与注意力和认知灵活性、同理心、情感和初级感觉处理相关的大脑区域,如初级听觉皮层。心理特征表征可能受益于 DTI 方法,因为它可以识别对特征有影响的大脑系统。
现在可以通过地球上的仪器探测到引力辐射。与受到人类头骨屏障的电磁辐射相比,引力辐射不受此限制。在 [3] 中,我们通过 MATLAB 模拟展示了引力辐射对人类中枢神经系统中轴突束的影响,这些轴突束之间存在触觉耦合。我们在那里报告说,对于低于 h = 0.09 的应变,对耦合轴突响应的差异时间没有明显影响。考虑到地球接收到的引力波的应变幅度约为 h = 1 e − 21 或更低 [5],我们得出结论,引力波对大脑的信息处理没有影响。然而在本文中,我们得出结论,即使是微弱的引力波也会对轴突束的信息传输产生明确的影响。
轴突是一款复杂的大分子机器,由相互关联的部分组成,它们在平行轴之间传输信号,例如旋转齿轮转移运动。生长锥是一种精细的传感器,可以通过产生的牵引力推动尖端并向前拉动轴突轴来整合机械和化学提示并传递这些信号。轴突轴反过来又感知了这种拉力,并在精心策划的响应中传递了该信号,协调细胞骨架重塑和插入的质量,以维持和支持尖端的前进。广泛的研究表明,主动力的直接应用本身是轴突生长的强大诱导剂,可能绕开了生长锥的贡献。本综述对当前有关力是轴突增长的使者及其控制导航的行动方式的知识的关键观点,包括尚不清楚的方面。它还专注于旨在机械操纵轴突的新型方法和工具,并讨论了它们在重新连接神经系统的潜在新疗法方面的影响。
锥体神经元很容易辨认,因为它们的胞体(神经元中包含细胞核的部分)具有特征性的三角形(因此得名)。然而,仔细检查就会发现,胞体的大小会有所不同,向胞体传递信号的树突所形成的“树突”的大小和形状也会有所不同(DeFelipe and Fariñas,1992 年)。此外,据报道,哺乳动物皮层中的一些锥体神经元的轴突从树突而不是胞体底部出现(Triarhou,2014 年;图 1)。这些“携带轴突的树突”很不寻常,因为树突接收的信号通常在胞体中经过处理,然后通过轴突发送到其他神经元(Förster,2014 年)。这些形态差异很重要,因为它们会影响单个神经元和神经元组计算信息的方式。研究人员对只发生在人类和灵长类动物身上的特征特别感兴趣,因为这些特征可能与认知有关
神经肌肉接头 (NMJ) 处的化学突触呈现出一种复杂的结构,其形成取决于两个主要因素的相互诱导:脊髓运动神经元和骨骼肌纤维。这种微妙平衡的破坏是许多神经肌肉疾病的根源,其细胞和分子机制仍有部分未知。这种病理生理学相关性引起了许多研究小组对开发有效研究模型的浓厚兴趣:几十年来,动物模型,尤其是小鼠,一直是神经肌肉疾病建模的黄金标准。[1] 总体而言,动物模型捕捉到了人类疾病的重要特征,因此对于了解器官和生物体规模的疾病进展非常有价值。然而,将这一发现充分应用于人类病理生理学的临床
机械和航空航天工程罗格斯大学 - 新不伦瑞克省,皮斯卡塔维,新泽西州08854,美国摘要提出了一种新颖的有限元模型,以研究嵌入细胞外基质中轴突的机械响应,当时纯粹在纯粹的非伴随kinematic Kinematic Bounders条件下伸长额。Ogden超弹性材料模型描述了轴突和细胞外矩阵材料的特征。对白质中的两个轴突绑定方案进行了研究,其中一个少突胶质细胞(单ol)具有多个连接的多oligodendrocyte(Multi-Ol)。在多ol绑定构型中,将产生的力随机定向为分布式神经胶质细胞在其附近的轴突周围任意包裹。在单摩尔设置中,位于中央的少突胶质细胞在附近的多个轴突。绑定力针对这种少突胶质细胞,从而导致更大的方向性和较远的应力分布。与轴突的少突胶质连接由弹簧式仪表板模型表示。髓磷脂的材料特性是少突胶质细胞刚度参数化的上限(“ K”)。提出的FE模型可以实现连接机制及其对轴突刚度的影响,以准确确定由此导致的应力状态。对不同连接场景的应力应变图的根平方偏差分析显示,轴突刚度随着束缚的增加而增加,表明少突胶质细胞在应力再分布中的作用。在单醇子模型中,对于每个轴突相同数量的连接,RMSD值随着“ K”(少突胶质细胞弹簧刚度)值的增加而增加。RMSD计算表明,对于“ K”值,与多OL相比,单摩尔模型产生的略微更硬模型。当前的研究还通过随机化和添加连接以确保更大的响应能力来解决多OL模型的潜在几何局限性。两个子模型中注意到的环状弯曲应力表明,轴突损伤积累和重复负载故障的风险。关键字:微力学,有限元素,少突胶质细胞,轴突损伤,CNS白色物质,多尺度模拟,超弹性材料,Abaqus incenclature
三维电镜数据是分析脑超微结构成分的可靠工具 [3–5]。由于典型的 3D-EM 数据规模大、成分数量庞大,因此手动执行这种分割非常繁琐,甚至不可能。例如,手动标记 5 亿个体素中的 215 个神经突需要 1500 小时 [6],我们估计,手动分割 3 亿个体素(大小为 15 × 15 × 50 nm3)的白质电镜中的轴突需要 2400 小时 [7]。因此,分析脑组织的 3D-EM 数据需要开发先进的软件工具,使神经科学家能够自动可视化、分割和提取脑超微结构的几何和拓扑特征。有几种用于分析 3D-EM 数据的软件工具,包括开源软件包,如显微镜图像浏览器(MIB)[8]、DeepMIB [9]、Knossos [10]、webKnos-sos [11]、AxonSeg [12]、AxonDeepSeg [13]、TrackEM2 [14]、CAT-MAID [15]、VAST [16]、NeuroMorph [17]、SegEM [6]、Ilastik [18],
摘要 中风、脑和脊髓创伤等中枢神经系统 (CNS) 损伤常常会导致永久性残疾,因为成人 CNS 神经元仅表现出有限的轴突再生。大脑具有令人惊讶的损伤后自我恢复的内在能力。然而,恶劣的外部微环境严重阻碍了轴突再生。最近的进展表明,内在再生途径的失活在大多数成人 CNS 神经元再生失败中起着关键作用。特别是,大量证据令人信服地证明雷帕霉素的机制靶点 (mTOR) 信号传导是驱动各种 CNS 损伤中轴突再生和发芽的最关键的内在再生途径之一。在这篇综述中,我们将讨论最近的发现,并强调 mTOR 通路在不同类型 CNS 损伤中轴突再生中的重要作用。重要的是,我们将证明,通过阻断关键的 mTOR 信号成分(如磷酸酶和张力蛋白同源物 (PTEN))可以重新激活该再生途径。鉴于多种 mTOR 信号成分是该途径的内源性抑制因子,我们将讨论特别适合此目的的基于 RNA 的疗法的良好潜力,以及它们在 2019 年冠状病毒病疫苗成功后最近引起了广泛关注的事实。为了专门解决血脑屏障问题,我们将回顾当前将这些 RNA 疗法输送到大脑的技术,重点是纳米颗粒技术。我们将提出将这些 RNA 介导的疗法与针对 mTOR 信号成分的脑靶向药物输送方法相结合的临床应用,作为一种有效可行的治疗策略,旨在增强轴突再生,实现中枢神经系统损伤后的功能恢复。关键词:轴突发芽;轴突再生;脑靶向药物输送;中枢神经系统损伤;缺血性中风;mTOR;纳米粒子;神经回路重建; PTEN;基于 RNA 的疗法
受伤的周围神经通常表现出不满意和不完整的功能结果,并且没有改善再生的临床批准疗法。术后电刺激(ES)增加了轴突再生长,但实际挑战,从延长手术室时间到与经皮丝的位置相关的风险和陷阱,可以阻止广泛的临床采用。本研究以高级生物吸收材料的形式提出了一种可能的解决方案,用于一种薄,柔性,无线植入物,该植入物在术后即时术中提供了短暂的损伤神经的精确控制的ES。后期,快速,完整和安全的生物吸附模式自然,并迅速消除所有组成材料,而无需手术提取。生物吸附率异常高得出,从使用独特的双层外壳结合了生物相容性形式的多丙二醇形式作为封装结构的两种不同的公式,以加速活性成分和限量片段的吸收直至完全吸收。由胫骨神经横断的小鼠模型与重新施加症的鼠标表明,该系统提供了与常规有线刺激器相匹配的性能和功效水平,但无需扩展手术周期或提取设备硬件。
基于抽象石墨烯的纳米孔材料(GNM)对于所有需要大型表面积(SSA)(典型的二维石墨烯)的应用都有可能有用,但在整体维度上都实现。此类应用包括例如气体存储和排序,催化和电化学能源存储。通过使用纳米 - 微粒颗粒作为模板来实现对结构的合理控制,但在纳米尺度上严格孔隙率的GNM的受控生产甚至表征仍然会引起问题。这些通常是使用纳米环的分散来产生的,作为前体,几乎无法控制最终结构,这反过来又反映了用于计算机模拟的结构模型构建中的问题。在这项工作中,我们描述了一种具有预定结构特性(SSA,密度,孔隙率)的材料模型的策略,该材料利用了分子动力学模拟,蒙特卡洛方法和机器学习算法。我们的策略受到实际综合过程的启发:从随机分布的平板开始,我们在频率上包括缺陷,穿孔,结构变形和边缘饱和度,在结构性重新结构后,我们获得具有给定结构特征的现实模型。我们发现了起始悬架的结构特征和大小分布与最终结构之间的关系,这可以为更有效的合成途径提供指示。我们在软件工具中实施了模型构建和分析程序,可根据要求免费提供。随后,我们对模型与H 2吸附的完整表征,从中我们从结构参数和重量密度之间提取定量关系。我们的结果定量地阐明了表面和边缘在确定H 2吸附中相对的作用,并提出了克服这些材料作为吸附剂的固有物理局限性的策略。