基于抽象石墨烯的纳米孔材料(GNM)对于所有需要大型表面积(SSA)(典型的二维石墨烯)的应用都有可能有用,但在整体维度上都实现。此类应用包括例如气体存储和排序,催化和电化学能源存储。通过使用纳米 - 微粒颗粒作为模板来实现对结构的合理控制,但在纳米尺度上严格孔隙率的GNM的受控生产甚至表征仍然会引起问题。这些通常是使用纳米环的分散来产生的,作为前体,几乎无法控制最终结构,这反过来又反映了用于计算机模拟的结构模型构建中的问题。在这项工作中,我们描述了一种具有预定结构特性(SSA,密度,孔隙率)的材料模型的策略,该材料利用了分子动力学模拟,蒙特卡洛方法和机器学习算法。我们的策略受到实际综合过程的启发:从随机分布的平板开始,我们在频率上包括缺陷,穿孔,结构变形和边缘饱和度,在结构性重新结构后,我们获得具有给定结构特征的现实模型。我们发现了起始悬架的结构特征和大小分布与最终结构之间的关系,这可以为更有效的合成途径提供指示。我们在软件工具中实施了模型构建和分析程序,可根据要求免费提供。随后,我们对模型与H 2吸附的完整表征,从中我们从结构参数和重量密度之间提取定量关系。我们的结果定量地阐明了表面和边缘在确定H 2吸附中相对的作用,并提出了克服这些材料作为吸附剂的固有物理局限性的策略。
三维电镜数据是分析脑超微结构成分的可靠工具 [3–5]。由于典型的 3D-EM 数据规模大、成分数量庞大,因此手动执行这种分割非常繁琐,甚至不可能。例如,手动标记 5 亿个体素中的 215 个神经突需要 1500 小时 [6],我们估计,手动分割 3 亿个体素(大小为 15 × 15 × 50 nm3)的白质电镜中的轴突需要 2400 小时 [7]。因此,分析脑组织的 3D-EM 数据需要开发先进的软件工具,使神经科学家能够自动可视化、分割和提取脑超微结构的几何和拓扑特征。有几种用于分析 3D-EM 数据的软件工具,包括开源软件包,如显微镜图像浏览器(MIB)[8]、DeepMIB [9]、Knossos [10]、webKnos-sos [11]、AxonSeg [12]、AxonDeepSeg [13]、TrackEM2 [14]、CAT-MAID [15]、VAST [16]、NeuroMorph [17]、SegEM [6]、Ilastik [18],
1 1,凯克医学院,南加州大学罗斯基眼科研究所,南加州大学,洛杉矶大学,洛杉矶,加利福尼亚州,美国,美国,生物医学工程系2,维特比工程学院,南加州大学,南加州大学,洛杉矶大学,洛杉矶大学,加利福尼亚州,加利福尼亚州,美国3号医学院,加利福尼亚州洛斯利亚大学,加利福尼亚州,凯克大学,凯克,校园,美国州,美国第四电气和计算机工程系,维特比工程学院,南加州大学,洛杉矶大学,加利福尼亚,美国,美国,波士顿科学神经调节5,美国,加利福尼亚州,美国加利福尼亚州瓦伦西亚,美国6约翰逊和约翰逊,美国6号约翰逊和约翰逊加利福尼亚州,美国,凯克医学院神经外科8号,南加州大学,洛杉矶,加利福尼亚,美国,美国1,凯克医学院,南加州大学罗斯基眼科研究所,南加州大学,洛杉矶大学,洛杉矶,加利福尼亚州,美国,美国,生物医学工程系2,维特比工程学院,南加州大学,南加州大学,洛杉矶大学,洛杉矶大学,加利福尼亚州,加利福尼亚州,美国3号医学院,加利福尼亚州洛斯利亚大学,加利福尼亚州,凯克大学,凯克,校园,美国州,美国第四电气和计算机工程系,维特比工程学院,南加州大学,洛杉矶大学,加利福尼亚,美国,美国,波士顿科学神经调节5,美国,加利福尼亚州,美国加利福尼亚州瓦伦西亚,美国6约翰逊和约翰逊,美国6号约翰逊和约翰逊加利福尼亚州,美国,凯克医学院神经外科8号,南加州大学,洛杉矶,加利福尼亚,美国,美国
适当的皮质层压对于认知,学习和记忆至关重要。在体感皮质中,以层状特异性方式详细介绍了锥体式神经元,以决定突触伴侣和整体纤维组织。在这里,我们利用男性和雌性小鼠模型,单细胞标记和成像方法来识别层状特异性侧支的内在调节剂,也称为间隙,轴突分支。我们为II/III层锥体神经元的稳健,稀疏,标记开发了新方法,以获得轴突分支形态的单细胞定量评估。,我们将这些方法与细胞自主的功能丧失(LOF)和过表达(OE)在体内候选筛查中结合在一起,以鉴定皮质神经元轴突分支层压板的调节剂。我们将细胞骨架结合蛋白DREBRIN(DBN1)的作用赋予调节II/III层皮质投射神经元(CPN)侧面轴突在体外的调节中的作用。LOF实验表明,DBN1是抑制II/III层CPN侧支轴突分支在IV层中的伸长的必要条件,在其中,通常不存在轴突通过II/III层CPN分支的轴突分支。相反,DBN1 OE产生过量的短轴突突起,让人联想到未能拉长的新生轴突侧支。结构 - 功能分析暗示DBN1 S142磷酸化和DBN1蛋白结构域已知可介导F-肌动蛋白捆绑和微管(MT)耦合,作为DBN1 OE时侧支分支的必要条件。综上所述,这些结果有助于我们理解调节兴奋性CPN中侧支轴突分支的分子机制,这是新皮层回路形成的关键过程。
1. 乔尔·M·多斯坎德 6RORPRQ + 6Q\GHU 'HSDUWPHQW RI 1HXURVFLHQFH -RKQV +RSNLQV .DYOL 1HXURVFLHQFH 'LVFRYHU\ ,QVWLWXWH 7KH -RKQV +RSNLQV 6FKRRO RI 0HGLFLQH 1 :ROIH 6W %DOWLPRUH 0' -RHOOHGRUVNLQG#JPDLO FRP 'HVLJQHG UHVHDUFK SHUIRUPHG UHVHDUFK FRQWULEXWHG XQSXEOLVKHG UHDJHQWV DQDO\WLF WRROV DQDO\]HG GDWD ZURWH WKH SDSHU 6ULUDP 6XGDUVDQDP 6RORPRQ + 6Q\GHU 'HSDUWPHQW RI 1HXURVFLHQFH -RKQV +RSNLQV .DYOL 1HXURVFLHQFH 'LVFRYHU\ ,QVWLWXWH 7KH -RKQV +RSNLQV 6FKRRO RI 0HGLFLQH 1 :ROIH 6W %DOWLPRUH 0' VVXGDUV #MKPL HGX 3HUIRUPHG UHVHDUFK DQDO\]HG GDWD 5DQGDO $ +DQG 6RORPRQ + 6Q\GHU 'HSDUWPHQW RI 1HXURVFLHQFH -RKQV +RSNLQV .DYOL 1HXURVFLHQFH 'LVFRYHU\ ,QVWLWXWH 7KH -RKQV +RSNLQV 6FKRRO RI 0HGLFLQH 1:ROIH 6W %DOWLPRUH 0' 5DQGDO +DQG #JPDLO FRP 'HVLJQHG UHVHDUFK SHUIRUPHG UHVHDUFK FRQWULEXWHG XQSXEOLVKHG UHDJHQWV DQDO\WLF WRROV -DNXE =LDN 6RORPRQ + 6Q\GHU 'HSDUWPHQW RI 1HXURVFLHQFH -RKQV +RSNLQV .DYOL 1HXURVFLHQFH 'LVFRYHU\ ,QVWLWXWH 7KH -RKQV +RSNLQV 6FKRRO RI 0HGLFLQH 1:ROIH 6W %DOWLPRUH 0' M]LDN #MKPL HGX 3HUIRUPHG UHVHDUFK DQDO\]HG GDWD 0DDPH $PRDK 'DQNZDK 6RORPRQ + 6Q\GHU 'HSDUWPHQW RI 1HXURVFLHQFH -RKQV +RSNLQV .DYOL 1HXURVFLHQFH 'LVFRYHU\ ,QVWLWXWH 7KH -RKQV +RSNLQV 6FKRRO RI 0HGLFLQH 1 :ROIH 6W %DOWLPRUH 0' PDPRDKGD#ZDNHKHDOWK HGX $QDO\]HG GDWD /XLV *X]PDQ &ODYHO 6XPPHU ,QWHUQVKLS 3URJUDP 1HXUR6,3 6RORPRQ + 6Q\GHU 'HSDUWPHQW RI 1HXURVFLHQFH -RKQV +RSNLQV .DYOL 1HXURVFLHQFH 'LVFRYHU\ ,QVWLWXWH 7KH -RKQV +RSNLQV 6FKRRO RI 0HGLFLQH 1 :ROIH 6W %DOWLPRUH 0' OJX]PDQ #DPKHUVW HGX $QDO\]HG GDWD
我们表明,由于(中)轴向异常,暗物质轴或轴突状颗粒(ALP)沿沿外部磁场的导体自发交替交流电流,从而意识到手性磁效应(CME)。我们提出了一个新的实验,以测量该电流以检测暗物质轴或ALP。这些诱导的电流是电子培养基效应,与轴突或ALP偶联与电子成正比,这取决于其显微镜物理。在实验设置中,一个由于CME引起的电流和真空电流的总和,这是由于异常的轴突耦合而导致的。与后者相比,CME电流通常是电子速度的一个因子,除非轴突或ALP偶联与电子的偶联比其与光子偶联以补偿Fermi速度抑制。但是,我们发现重新利用当前操作和计划的轴突卤素可能具有良好的敏感性来探测CME电流。
摘要 中风、脑和脊髓创伤等中枢神经系统 (CNS) 损伤常常会导致永久性残疾,因为成人 CNS 神经元仅表现出有限的轴突再生。大脑具有令人惊讶的损伤后自我恢复的内在能力。然而,恶劣的外部微环境严重阻碍了轴突再生。最近的进展表明,内在再生途径的失活在大多数成人 CNS 神经元再生失败中起着关键作用。特别是,大量证据令人信服地证明雷帕霉素的机制靶点 (mTOR) 信号传导是驱动各种 CNS 损伤中轴突再生和发芽的最关键的内在再生途径之一。在这篇综述中,我们将讨论最近的发现,并强调 mTOR 通路在不同类型 CNS 损伤中轴突再生中的重要作用。重要的是,我们将证明,通过阻断关键的 mTOR 信号成分(如磷酸酶和张力蛋白同源物 (PTEN))可以重新激活该再生途径。鉴于多种 mTOR 信号成分是该途径的内源性抑制因子,我们将讨论特别适合此目的的基于 RNA 的疗法的良好潜力,以及它们在 2019 年冠状病毒病疫苗成功后最近引起了广泛关注的事实。为了专门解决血脑屏障问题,我们将回顾当前将这些 RNA 疗法输送到大脑的技术,重点是纳米颗粒技术。我们将提出将这些 RNA 介导的疗法与针对 mTOR 信号成分的脑靶向药物输送方法相结合的临床应用,作为一种有效可行的治疗策略,旨在增强轴突再生,实现中枢神经系统损伤后的功能恢复。关键词:轴突发芽;轴突再生;脑靶向药物输送;中枢神经系统损伤;缺血性中风;mTOR;纳米粒子;神经回路重建; PTEN;基于 RNA 的疗法
神经系统中存在多种延迟来源。首先考虑由于动作电位沿轴突传播而导致的延迟。在上述模型中,当动作电位在神经元 j 的细胞体中产生时,与其相连的所有其他神经元会立即感受到它。然而,实际上,动作电位必须沿着神经元 j 的轴突传播到突触或间隙连接。传导速度范围从沿无髓轴突的 1 米/秒数量级到沿有髓轴突的 100 米/秒以上 [16, 55]。这可能导致某些脑结构出现显著的时间延迟。有多种方法可以将其纳入模型,例如包括变量的空间依赖性或代表神经元不同部分的多个隔间 [37]。然而,如果我们主要关注动作电位到达轴突末端时的影响(它会在另一个神经元中引起动作电位吗?),那么更简单的方法是在耦合项中加入时间延迟。在这种情况下,一般耦合项变为 f ij ( xi ( t ) , xj ( t − τ ij )) (4)
首先,大脑的轴突(神经元用来向其他神经元发送信号的长神经纤维)逐渐被一种叫做髓鞘(大脑白质)的脂肪物质所包裹,最终使轴突的传输速度提高一百倍。与此同时,树突(神经元用来接收来自附近轴突信号的树枝状延伸)变得更加细长,而使用最频繁的突触(轴突和树突传递信号的微小化学连接点)变得更加丰富和强大。与此同时,很少使用的突触开始萎缩。这种所谓的突触修剪会导致大脑皮层(我们进行许多有意识和复杂思考的灰质外层)变得更薄但更高效。总的来说,这些变化使整个大脑成为一个更快、更复杂的器官。