Netrin-1是用于轴突引导的规范化趋化提示。可以追溯到1890年代,当Cajal博士提出轴突可能会受到可扩散的线索的指导,这些提示吸引了脊柱连任神经元轴突向胚胎脊髓的腹中线的投影,这些提示是分泌的,并在其中分泌了这些线索,并形成了化学动物的渐变渐变(Moore in neuroerepithium(Moore)(Moore)(Moore)。Netrin-1与Netrin-2一起在胚胎鸡脑匀浆中发现并纯化。随后,其他Netrin家族蛋白已被鉴定或与果蝇,小鼠和人类有关(Moore等,2007)。现在,发现Netrins不仅在轴突探路中起作用,而且在其他多种细胞过程中起关键作用,包括细胞迁移,粘附,分化和生存,并参与神经变性(Jasmin等,2021),炎症,炎症,炎症,癌症(Xia等,2022),癌症和其他临床疾病(2022)。Netrin-1已在帕金森氏病(PD),阿尔茨海默氏病(AD)和其他类型的神经系统疾病中进行了研究,我们发现了与AD发病机理有关的Netrin-1的新证据(Bai等,2020)。在这里,我们提供了Netrin-1的概述,以突出其在这些神经系统疾病中的机械作用和生物标志物潜力。
我们使用1891年全面重建神经元的广泛数据集研究了小鼠神经元轴突中突触前接触的分布,并检查了全脑单细胞神经元网络。我们发现,在整个轴突和大脑区域中,Bouton位置并非均匀。由于我们的算法能够从完全形态重建数据集中产生全脑单细胞连接矩阵,因此我们进一步发现,非均匀的布顿位置对网络布线有重大影响,包括学位分布,Triad Census和社区结构。通过干扰神经元形态,我们进一步探讨了解剖细节和网络拓扑之间的联系。在我们的计算机探索中,我们发现树突状树和轴突树跨度将对网络接线产生最大的影响,然后是突触接触删除。我们的结果表明,在单细胞水平的整个大脑网络的研究中,必须仔细解决神经解剖学细节。
相关性受体酪氨酸激酶,该激酶结合了居住在相邻细胞上的混杂GPI锚定的Ephrin-A家族配体,从而导致接触依赖性双向信号传导进入相邻细胞。受体下游的信号通路称为正向信号传导,而ephrin配体下游的信号通路称为反向信号传导。在GPI锚定的Ephrin-A配体中,EFNA5是EFNA7的同源/功能性配体,它们的相互作用调节脑发育调节细胞细胞粘附和排斥。在轴突上具有驱虫活性,例如参与了皮质丘脑轴突的引导以及视网膜轴突对丘的正确地形图。还可以通过caspase(CASP3)依赖性促凋亡活性来调节脑发育。正向信号传导可能会导致ERK信号通路的组件激活,包括MAP2K1,MAP2K2,MAPK1和MAPK3,它们在激活EPHA7时被磷酸化。
1。引言神经元是高度极化的细胞类型,在结构和功能上具有不同的过程,并从介导信息流过神经系统(例如树突和轴突)的SOMA延伸。轴突是一个类似线的过程,它通过从SOMA出现的神经递质的释放传输到其他神经元,这是一个单个长过程。来自Soma出现的多个分支过程称为树突。树突中包含神经递质受体,可从相邻连接的神经元收集信号[1]。神经元,其中三个以上的树突由soma产生,并以不同角度或不同的杆子辐射为多极神经元,其轴突末端包含多型突触囊泡[2],一种突触特征,一种突触特征,通常与抑制性神经转相者相关。在哺乳动物中,在锥体神经元之后,第二个位置由多极神经元获得[4]。
功能受体酪氨酸激酶,该酪氨酸激酶结合了固定在相邻细胞上的混杂GPI锚定的Ephrin-A家族配体,从而导致接触依赖性双向信号传导进入相邻细胞。受体下游的信号通路称为正向信号传导,而ephrin配体下游的信号通路称为反向信号传导。在GPI锚定的ephrin-A配体中,EFNA5是EFNA7的同源/功能性配体,它们的相互作用调节了调节细胞细胞粘附和排斥的脑发育。在轴突上具有驱虫活性,例如参与了皮质丘脑轴突的引导以及视网膜轴突对丘的正确地形图。还可以通过caspase(CASP3)依赖性促凋亡活性来调节脑发育。正向信号传导可能会导致ERK信号通路的组件激活,包括MAP2K1,MAP2K2,MAPK1和MAPK3,它们在激活EPHA7时被磷酸化。
TBI产生大脑的快速变形,导致一系列特定的病理事件。所产生的大脑解剖结构和神经生理学的变化会破坏影响认知,自主和情绪功能的多个脑网络,以及行为的其他方面(Eslinger等,2007)。对大脑连接的损害,涉及广泛分布的大脑网络,是认知障碍发展的关键因素(Mesulam,1998)。弥漫性轴突损伤最近被称为创伤性轴突损伤,发生在近后抗体中的轴突损伤,并落下,其中减速和旋转力导致大脑白质的剪切,尤其是在额叶内(Marquez de la Plata等人,2011年)。TBI后,白质的完整性与损伤的严重程度以及结果相关。Kraus等。 (2007)记录,各种白质结构的完整性的降低与注意力,记忆和执行功能的度量较差有关。 tbi在各个个体的可变位置产生了复杂的弥散轴突损伤模式,因此很难将白质破坏定位(Kinnunen等,2011)。 尽管白质破坏是TBI后认知障碍的重要决定因素,但常规的神经影像学会低估了其程度。 扩散张量成像(DTI)是一种新型的神经影像学方法,用于研究人脑中白质区的解剖学和完整性(Lawes等,2008; Beaulieu,2009; Thiebaut de Schotten et al。,2011)。Kraus等。(2007)记录,各种白质结构的完整性的降低与注意力,记忆和执行功能的度量较差有关。tbi在各个个体的可变位置产生了复杂的弥散轴突损伤模式,因此很难将白质破坏定位(Kinnunen等,2011)。尽管白质破坏是TBI后认知障碍的重要决定因素,但常规的神经影像学会低估了其程度。扩散张量成像(DTI)是一种新型的神经影像学方法,用于研究人脑中白质区的解剖学和完整性(Lawes等,2008; Beaulieu,2009; Thiebaut de Schotten et al。,2011)。最近的研究表明,与其他神经影像学方法相比,DTI不仅在急性阶段,而且在慢性阶段的创伤性损伤之后,对TBI的离散轴突损伤进行了更敏感的测量(Thomas等,2009,2011; Rimrodt等,2010; Charlton et al。从DTI地图集中得出的解剖信息也可以用于评估TBI中白质损害的扩展。在本文中,我们着重于TBI的身体和神经病理学原因对白质损害的影响,并描述了典型的临床临床预测的三个单一病例代表。 )。最后,我们培养了使用DTI测量TBI轴突损伤的研究中报告的初步结果。
nissl颗粒正在成为有趣的成分,它们在再生疗法领域具有深远的影响。这个摘要封装了全面综述的本质,探索了NISSL颗粒,轴突再生及其在再生医学中的变革性应用之间的联系。NISSL颗粒的分子复杂性构成了这种探索的基础,从而揭示了它们在策划细胞反应中的动态作用,尤其是在轴突再生的背景下。当我们深入研究NISSL颗粒与再生过程之间的相互作用时,本综述突出了这些颗粒有助于神经元修复和恢复的各种机制。除了他们与神经生物学的传统关联之外,最近的进步强调了NISSL颗粒作为治疗剂的转化潜力。洞悉他们参与增强轴突再生的参与促使这些颗粒作为更广泛的再生医学领域的关键参与者。抽象封装的证据表明调节NISSL颗粒相关的途径有望增加组织再生,将其适用性扩展到神经系统的范围之外。本综述旨在为寻求理解NISSL颗粒在再生疗法中的多方面作用的医学专业人员,研究人员和临床医生提供宝贵资源。通过阐明NISSL颗粒,轴突再生和治疗应用之间的复杂联系,这项工作渴望催化进一步的研究和创新,最终促进再生策略的演变,从而利用细胞组成部分内与众不同的均匀能力。
视网膜神经节细胞(RGC)通常无法再生轴突,导致视神经损伤后视力丧失。许多研究表明,调节特定基因可以增强RGC的存活并促进视神经再生,从而通过单基因操作诱导体内长距离轴突再生仍然具有挑战性。然而,合并的多基因疗法已被证明有效地有效增强了轴突再生。目前,有关促进视神经再生的研究仍然很慢,大多数研究无法实现超出视神经的轴突生长或与大脑重新建立联系。未来的研究优先级包括指导轴突生长沿正确的途径,促进突触形成和髓鞘形成,并修改抑制性微环境。这些策略不仅对视神经再生至关重要,而且对于中枢神经系统修复中的更广泛应用至关重要。在这篇综述中,我们讨论了视神经再生的多因素治疗策略,从而提供了对神经再生研究的见解。
