摘要:前连合(AC)是一束轴突,它们在嗅觉区域(例如嗅球(OB),前嗅觉核(AON)和梨状皮层(PC)等嗅觉区域之间交流,在嗅觉区域之间进行交流。以前,我们报道说,AC的发展是一个高度调节的过程,涉及渐进式和回归的增长策略,在E17胚胎开发结束时达到对侧。同时,对侧结构中的树博化延迟到产后3-5天。在这里,我们使用与EGFP或MCHERRY转导的腺相关病毒(AAVS)向量,我们在OB,AON和PC中注入了嗅觉区域,以研究穿过AC的对侧神经支配场。我们发现,来自OB的对侧轴突仅穿过AC的前肢,以投射到颗粒细胞层(GCL)中。相比之下,轴突源自前PC项目,进入对侧OB,AON和PC。这些轴突不仅将其释放到GCL中,还可以伸入二尖瓣和外部丛状层,以及前PC层1B。,我们通过AC的后肢专门观察到后PC项目,专门于对侧PC,从1B层进行了根本性的塑造。内一核核仅通过AC的后肢向后PC进行。共同展示了嗅觉结构中对侧树博化的详细图,这对于理解脑半球之间嗅觉信息的处理至关重要。
摘要:许多眼科病理的常见风险因素涉及对视神经的非病理,与年龄有关的损害。了解与年龄相关的变化的机制可以促进针对生命中任何时候发生的眼科病理的靶向治疗。在这篇综述中,我们检查了视神经的这些与年龄相关的,神经退行性的变化,将这些变化从解剖学到分子水平进行上下文,并欣赏它们与眼科生理学的关系。从视神经头(ONH)的简单结构和机械变化,到组织和环境的表观遗传和生化改变,多种依赖年龄的机制驱动细胞外基质(ECM)重塑,视网膜神经节细胞(RGC)损失以及降低的临时轴突的降低能力。结合使用,即使使用“成功”再生轴突,衰老也降低了髓磷脂保持最大电导率的能力。神经胶质细胞再生过度补偿并导致微环境促进RGC轴突死亡。更好地阐明视神经神经退行性的遗物,特别研究人类ECM,RGC,轴突,少突胶质细胞和星形胶质细胞;阐明老化的眼结缔组织改变及其超微结构影响的确切过程;并开发了针对已知遗传,生化,母质组和神经蛋白流量标志物的新型技术和药物治疗。管理模型在解决青光眼,糖尿病性视网膜病和其他盲目疾病时应考虑与年龄有关的变化。
青光眼是世界上视力丧失的主要原因之一,其特征是视网膜神经节细胞(RGC)的功能障碍。青光眼的早期病理机理是RGC的轴突的变性,发现可以预防轴突变性的新疗法引起了极大的关注。在许多神经退行性系统中,增加辅酶烟酰胺腺苷二核苷酸(NAD)的浓度已被证明是轴突保护性。增加NAD可以通过增加参与神经元NAD,烟酰胺单核苷酸腺苷转移酶2(NMNAT2)的末端酶的催化特性来实现。nmnat2是理想的治疗靶标。多酚A(PA),这是一种不会披露的多酚,已被证明是通过NMNAT2的正调制来提高NAD的。的目的是开发一种基于细胞的测定法,用于筛选PA和12个新型PA的类似物,以在从C57BL/6J小鼠中分离出脑皮质,视网膜和肝细胞中其NAD促进作用。进行了使用生物发光测定的方案,以优化变量,例如细胞浓度,底物(烟酰胺)浓度,PA浓度和孵育时间。该方法开发产生了一日测试PA及其在皮质细胞中类似物的方案。pa及其几个类似物表现出NAD促进效应。该方案以及筛选的结果可以进一步用于开发可预防青光眼以及其他轴突和神经退行性的新型药物。
摘要:中枢神经系统中轴突具有许多优势,包括信号传输的能量消耗减少和信号速度增强。轴突周围的髓鞘由由ol- igodendrocytes形成的多层膜组成,而特定的糖蛋白和脂质在此编队过程中起着各种作用。像髓磷脂一样有益,其失调和变性可能会有害。炎症,氧化应激以及细胞代谢的变化和细胞外骨可能会导致这些轴突脱髓鞘。这些因素是某些脱髓鞘疾病的标志性特征,包括多发性硬化症。脱素的影响还与诸如青光眼和阿尔茨海默氏病以及继发性变性的疾病中的主要变性有关。这揭示了髓磷脂与神经退行性的次要过程之间的关系,包括创伤性损伤和透射性脱发后导致的变性。髓磷脂在原发性和继发性退化中的作用也引起了探索抗透明式的策略和靶标,包括使用抗炎性分子或纳米颗粒提供药物。尽管在
项目详情 项目代码 MRCNMH25Ba 病房标题 涉及轴突体积和髓鞘形成的大脑生长机制与自闭症谱系障碍有关。 研究主题 神经科学与心理健康 摘要 正确的轴突体积和髓鞘形成对神经元功能至关重要。目前对控制轴突体积的机制知之甚少,大脑髓鞘的流失发生在衰老和常见的与年龄相关的神经退行性疾病,如阿尔茨海默病中。越来越多的证据还将髓鞘水平改变与自闭症谱系障碍(ASD;影响全球每 160 人中约 1 人)联系起来。该项目旨在确定一种新型轴突体积和髓鞘形成调节剂的作用机制,该调节剂被认为与 ASD 有联系。描述意义:大约每 160 人中就有 1 人被诊断患有自闭症谱系障碍 (ASD),通常与多动症、焦虑、抑郁和癫痫等使人衰弱的精神健康疾病有关。几种遗传性疾病及其动物模型将 ASD 与大脑髓鞘形成的变化联系起来。在生长障碍 Silver-Russell 综合征 (SRS) 中,一部分病例与印记的 GRB10 基因有关。这些患者中约有 60% 被诊断患有 ASD 并伴有持续发育迟缓。因此,尽管罕见,SRS 提供了一个独特的机会来深入了解 ASD 和其他常见精神健康障碍的潜在机制。挑战:ASD 及其合并症具有复杂的遗传起源。潜在的细胞和分子机制尚不清楚。原创性:学生将使用独特的 GRB10 SRS 小鼠模型,这些模型表现出与 ASD 特征一致的改变的社会行为。初步数据表明,由于轴突体积发育增大和髓鞘形成变化导致大脑生长改变,这是导致这些行为变化的原因。重要的是,我们对 GRB10 的了解表明这些细胞变化存在可测试的机制,涉及调节胰岛素和 mTOR 信号传导,可能始于早期胚胎发育。项目目标:a) 确定 GRB10 突变体和野生型同窝动物在大脑发育的不同阶段的轴突体积和髓鞘沉积变化。b) 确定细胞机制是否涉及改变的胰岛素受体和 mTOR 信号传导。c) 使用新的家笼视频分析技术评估 GRB10 突变小鼠的社会行为变化。d) 使用大规模全基因组人类群体数据测试 GRB10 与 ASD 或大脑结构特征之间的联系。学生所有权:学生在追求每个目标时都有机会探索自己的想法。他们将:a) 选择各种方法来检查轴突,从基本的组织学到电子扫描显微镜和复杂的 MRI 成像。b) 决定如何最好地将小鼠遗传学与细胞生物学和成像相结合,
摘要:中枢神经系统轴突的髓鞘化具有许多优点,包括减少信号传输的能量消耗和提高信号速度。轴突周围的髓鞘由少突胶质细胞形成的多层膜组成,而特定的糖蛋白和脂质在这一形成过程中发挥着各种作用。髓鞘虽然有益,但其失调和退化可能会造成损害。炎症、氧化应激以及细胞代谢和细胞外基质的变化可导致这些轴突脱髓鞘。这些因素是某些脱髓鞘疾病(包括多发性硬化症)的标志性特征。脱髓鞘的影响也与青光眼和阿尔茨海默病等疾病的原发性退化以及继发性退化过程有关。这揭示了髓鞘与神经退行性变的次级过程之间的关系,包括创伤性损伤和跨突触变性后的退化。髓鞘在原发性和继发性退化中的作用也是探索髓鞘再生策略和目标的兴趣所在,包括使用抗炎分子或纳米颗粒来输送药物。尽管在髓鞘再生动物模型中使用这些方法
摘要 已修改空间钳制鱿鱼轴突 (18'C) 的 Hodgkin-Huxley 方程,以近似来自重复发射甲壳类动物步行腿轴突的电压钳数据,并计算了响应恒定电流刺激的活动。钠电导系统的 ino 和 h. 参数沿电压轴向相反方向移动,因此它们的相对重叠增加约 7 mV。时间常数 Tm 和 Th 以类似的方式移动。延迟钾电导的电压依赖性参数 n、O 和 T 向正方向移动 4.3 mV,Tr 均匀增加 2 倍。漏电电导和电容保持不变。该修改后的电路的重复活动在质量上与标准模型的重复活动相似。电路中添加了第五个分支,代表重复步行腿轴突和其他重复神经元中存在的瞬时钾电导系统。该模型具有各种参数选择,重复发射频率低至约 2 个脉冲/秒,高至 350 个/秒。频率与刺激电流图可以通过低频范围的十倍直线很好地拟合,并且脉冲序列的总体外观与其他重复神经元的相似。刺激强度与在标准 Hodgkin-Huxley 轴突中产生重复活动的刺激强度相同。研究发现,重复放电率和第一个脉冲延迟时间(利用时间)受瞬时钾电导(TB)失活时间常数、延迟钾电导(Tn)和漏电电导(ga)值的影响最大。该模型提出了一种通过毫秒级膜电导变化产生稳定低频放电的机制。
我们引入神经网络作为人工智能模型之一。神经网络是生物神经细胞回路中进行的信息处理的模型。神经细胞由称为细胞体的主体、从细胞体延伸出来的树突和连接到其他细胞的轴突组成。轴突的末端附着在其他神经细胞的树突上,轴突与其他神经细胞的连接处称为突触。树突接收来自其他细胞和感觉细胞的输入信号,信号在细胞体内进行处理,并通过轴突和突触将输出信号发送给其他神经元(图2(a))。 据称大脑中的神经元数量约为 10^10 到 10^11。通过结合这些细胞,每个神经元以并行和分布式的方式处理信息,从而产生非常复杂和先进的处理。一个细胞的输出通过突触传递到其他细胞,通过轴突可以分支成数十到数百个神经元。单个细胞具有的突触连接数量从数百个到数万个不等。所有这些突触连接都有助于神经元之间的信号传输。 当一个信号从另一个神经细胞到达一个神经细胞时,膜电位会因信号而发生变化,当信号超过一定的阈值时,电位就变为正值,神经细胞就会兴奋。然后它向其他神经元发送信号。无论输入值如何,该图的形状几乎都是相同的波形,一旦超过阈值,就会产生恒定形状和幅度的电脉冲。因此人们认为,神经网络中承载信息的不是电脉冲的波形,而是电脉冲的频率(图2(b))。 细胞体的阈值函数,当输入高于阈值时,发出电脉冲,当输入低于阈值时,不发出电脉冲,具有从输入到输出的非线性转换效果。此外,还有兴奋性突触,它会释放使输入神经细胞更容易兴奋的递质,还有抑制性突触,它会使输入神经细胞更不容易兴奋。接收输入神经元可以被认为是接收来自每个输出神经元的输入的总和。 神经网络的数学模型源于对神经元的观察。 1943年,McCullough和Pitts提出了正式的神经元模型。图 2(c)中的圆圈表示一个神经元的模型。 xk 取值 0 和 1,表示该神经元接收的突触数量。
神经营养因子,包括NGF,BDNF和神经胶质细胞系的神经营养因子(GDNF),通过激活诸如PI3K/AKT和MAPK/ERK PATH的细胞内信号传导级联,刺激神经元存活和轴突伸长。该信号传导促进了细胞骨架重排和生长锥的进步。再生轴突的再生对于恢复神经传导速度至关重要[6]。尽管周围神经具有内在的再生能力,但较大的神经间隙和未对准的纤维仍然是重大挑战。这需要辅助策略,例如神经移植,导管和生物材料来弥合缺陷并优化再生环境[7]。
脊髓损伤(SCI)通常会导致各种长期后遗症,而长期受伤的脊髓表现出难治性,显示对细胞移植疗法的反应有限。对我们的知识,尚无临床前研究报告一种治疗方法,结果超过了仅包括康复的治疗方法。在这项与SCI大鼠的研究中,我们提出了一种新型的联合疗法,涉及Semaphorin 3a抑制剂(SEMA3AI),该治疗增强了轴突再生,作为第三个治疗元件,结合了神经/祖/祖细胞的移植和修复。这种全面的治疗策略在Sci中心的宿主衍生神经元和少突胶质细胞分化方面取得了重大改善,即使在慢性损伤的脊髓中,也促进了轴突再生。与接受移植和康复治疗的动物相比,伸长的轴突建立了功能性电连接,从而导致运动迁移率的显着增强。结果,我们的联合移植,SEMA3AI和康复治疗有可能成为慢性SCI患者的重要一步,从而提高了他们恢复运动功能的能力。
