教学大纲PSY 493 005节:精神病学的神经科学春季; MW 10.20-11.40 AM; Akers Hall 140请注意,讲座是面对面的(Akers Hall 140+Tophat),除了上课的第一周,第一次讲座是同步的(Zoom+Tophat),第二堂课是异步的(D2L+Tophat)。检查下面的课程时间表以获取详细信息。教练Alexa Veenema博士;办公室:4018 ISTB;办公时间:预约; aveenema@msu.edu课程先决条件PSY 209大脑和行为或NEU 301神经科学介绍I.学生应该对中枢神经系统有基本知识。课程描述本课程提供了发展和成人心理病理学基础的神经生物学机制的概述,包括抑郁症,焦虑症,暴力,人格障碍,自闭症和精神分裂症。我们将探索神经递质参与精神病理学,包括5-羟色胺和多巴胺,神经肽,加压素和催产素,应激激素,神经元连接性和神经回路。我们将讨论遗传背景和早期环境如何成为心理病理发展的危险因素。我们将回顾神经递质,神经肽,压力激素和神经连通性受损如何介导情绪,认知和社会行为的异常调节。该课程将讨论人类研究和心理病理动物模型的最新发现。课程读取课程材料包括科学期刊文章(研究评论和主要研究文章)。所有期刊文章将发布在D2L(https://d2l.msu.edu/)上。为了讨论该领域的最新发现的选择,可以在课堂上讨论文章之前仅一周就发布了主要的研究文章。期刊文章是课堂讲座的基础,我们将进一步详细介绍特定主题。请事先阅读期刊文章,并准备在课堂上讨论它们。访问课程材料教学大纲,所需的读数以及有关写作分配的信息(请参见下文)发布在D2L(https://d2l.msu.edu/)上。讲座幻灯片将在相应的讲座之前发布在D2L上。在相应的讲座之后,在Tophat上也可以在Tophat上提供讲座载玻片。顶级帽子本课程需要使用Top Hat(www.tophat.com),这是一种课堂参与工具,旨在评估您对课堂课程材料的理解。您将能够使用Apple或Android智能手机和平板电脑,笔记本电脑或
• 评分阶段 1 • 评分阶段 2 • 评分阶段 3 • 评分阶段 4 过程标准描述了学生参与内容的方式。科学与工程实践 (SEP) 描述了学生为了学习内容需要在课堂上进行的实践。反复出现的主题和概念 (RTC) 描述了学生需要如何思考内容才能学习它。科学与工程实践 6.1A 根据从文本、现象、模型或调查中观察到的信息或提出问题并定义问题。6.1B 使用科学实践来计划和开展描述性、比较性和实验性调查,并使用工程实践来设计问题的解决方案。6.1C 在实验室、教室和现场调查期间使用适当的安全设备和实践,如德克萨斯州教育署批准的安全标准中所述。 6.1D 使用适当的工具,如量筒、米制尺、元素周期表、天平、秤、温度计、温度探头、实验室器皿、计时装置、pH 指示剂、加热板、模型、显微镜、载玻片、生命科学模型、培养皿、解剖工具包、磁铁、弹簧秤或力传感器、模拟波行为的工具、卫星图像、手持放大镜以及实验室笔记本或日志。6.1E 使用国际单位制 (SI) 收集定量数据,并以定性数据为证据。6.1F 使用反复试验和方法组织数据,构建适当的表格、图形、地图和图表。6.1G 开发和使用模型来表示现象、系统、过程或工程问题的解决方案。6.1H 区分科学假设、理论和定律。6.2A 确定模型的优点和局限性,例如其尺寸、属性和材料。 6.2B 通过识别任何显著的描述性统计特征、模式、错误来源或局限性来分析数据。6.2C 使用数学计算来评估数据中的定量关系。6.2D 评估实验和工程设计。6.3A 提出解释并提出由数据和模型支持的解决方案,并与科学思想、原则和理论相一致。6.3B 在各种设置和形式中单独或协作地交流解释和解决方案。6.3C 使用应用科学解释和实证证据进行科学论证。6.4A 将过去和当前的研究对科学思想和社会的影响联系起来,包括科学过程、成本效益分析以及与内容相关的不同科学家的贡献。6.4B 通过评估来自多个适当来源的证据来评估所使用的可信度、准确性、成本效益和方法,从而做出明智的决策。
尽管有许多尝试,但很难获得有关染色体大分子组织及其重复模式的信息。一个攻击点,长期以来一直被认可,但直到最近才无法实现,是对染色体某些组成部分的选择标记,其分布可以在随后的细胞分裂中看到。Reichard和Estborn'表明N15标记的胸苷是脱氧核糖核酸(DNA)的前体,并且没有转移到核糖核酸的合成中。最近Friedkin等人2以及降落和Schweigerl使用C'4标记的胸苷来研究DNA合成。在雏鸡胚胎和乳酸杆菌中,示踪剂没有明显的转移向核糖核酸。鉴于这些发现,胸苷似乎是实验所需的中间体,但是到目前为止使用的标签对于通过自显影手段的显微镜可视化并不令人满意。为了确定细胞中几个单个染色体是否是放射性的,必须获得具有分辨率为染色体尺寸的放射自显影仪。在此级别上的分辨率很难使用大多数同位素获得,因为它们的β颗粒的范围相对较大。理论上的tritium应该提供可获得的最高分辨率,因为β颗粒的最大能量仅为18 keV,对应于照相乳液中的微米范围。因此,应该可以在小(如单个染色体)的颗粒中识别该标签。考虑到这一点;制备trit胸腺标记的胸苷,并用于标记染色体,并通过使用照相emulsions遵循其在以后分裂中的分布。材料和方法。通过从乙酸的羧基催化trib催化tritium到胸苷的嘧啶环中的碳原子(该方法的详细信息),制备了高特异性活性(3 x 101 mc/mm)的trium标记的胸苷(3 x 101 mc/mm)。Vicia Faba(英国宽豆)的幼苗在含有2-3罐/ml放射性胸苷的矿物营养溶液中生长。选择该植物是因为它具有121arge染色体,其中一对在形态上是不同的,并且由于分裂周期的长度和循环中DNA合成时间的长度是在同位素溶液中生长后的4年后,以适当的时间在适当的时间内用水洗涤,并将其彻底洗涤为col col,并转移了col(col),并转移了col(col),并转移了一个saquine(col)。水罐/ml)以进一步增长。以适当的间隔固定在乙醇 - 乙酸中(3:1),在1 N HC1中水解5分钟,用Feulgen反应染色,并在显微镜载玻片上挤压。剥离膜,并如前所述制备放射自显影。5
补充方法 DNA 分离 使用自动 DNA 提取仪按照其协议(chemagic MSM I,PerkinElmer,美国马萨诸塞州沃尔瑟姆)从血液样本中分离 DNA。 使用试剂盒“EZ1&2 DNA Tissue”(Qiagen,德国希尔登)按照协议使用自动 DNA 提取仪 EZ1 Advanced XL(Qiagen)从羊膜细胞和绒毛中分离 DNA。 染色体微阵列(CMA) 使用 SureTaq DNA 标记试剂盒(Agilent,美国加利福尼亚州圣克拉拉)标记 DNA,并根据制造商的说明在 GenetiSure Cyto 4x180K CGH 微阵列(Agilent)上进行杂交。使用 InnoScan 910 AL 扫描仪(Innopsys,Carbonne,法国)扫描载玻片,并使用分析程序 Mapix(Innopsys)和 CytoGenomics 版本 5.1.2.1 和 5.3.0.14(Agilent)进行处理。使用参考基因组 GRCh38 评估数据。染色体分析和荧光原位杂交使用标准方法从肝素血样以及绒毛和羊膜细胞培养物中进行中期制备。简而言之,将来自肝素血样的细胞培养在含有植物血凝素作为有丝分裂原的 LymphoGrow 培养基(CytoGen,Sinn,德国)中,羊膜细胞培养在 Amniogrow plus 培养基(Cytogen,Sinn,德国)中,CVS 细胞培养在 Chang 培养基 D(Fujifilm,Minato,日本)中。固定后,将中期细胞滴到载玻片上,然后在 60 °C 下干燥过夜。使用核型分析系统 Ikaros(MetaSystems,德国阿尔特鲁斯海姆)通过 GTG 显带评估中期染色体的扩散情况。对于 FISH 分析,使用 Empire Genomics(美国纽约州布法罗)的探针 RP11-213E22-green 和 RP11-577D9-orange(7 号染色体)以及 RP11-358H10-green 和 RP11-241M19-orange(16 号染色体)。所有探针均按照制造商的说明使用。使用 Isis 数字成像系统(Metasystem Inc.,德国阿尔特鲁斯海姆)分析图像。 PCR 和测序 在适用的情况下,确认并进一步指定 OGM 分析中的断点,方法是使用 MinION 测序仪(Oxford Nanopore,英国牛津)进行第三代长距离测序,或使用 Hitachi 3500xL 基因分析仪(Thermo Fisher Scientific,美国马萨诸塞州沃尔瑟姆)进行 Sanger 测序。引物是根据 Dremsek et al., 2021 中描述的策略设计的。为了将引物定位得尽可能靠近预期的断点,OGM 数据和 CMA 数据都融入了其设计中。为了分析P1,进行了长距离PCR(连接点B/D*的扩增子:正向引物:5'-ggaggacaattttatcccccaggg-3'和反向引物:5'-gtgagccgtgagtttgccactat-3';连接点D*/B*的扩增子:正向引物:5'-tcgttgacggtgaaatgctacgt-3'和反向引物:5'-gcagataacggagtgaggaaggc-3')。PCR扩增后,使用引物 5' -acagctcactatagcagataggtgt- 3'、5' - ttgcatcaggaacatgtggacct- 3'、5' -ctggtcacaggcgcaaatcaaag- 3'、5' -gtcagcaaaggagagaagcagct- 3' 和 5' - gcaggttggctctttcccaagta- 3' 制备连接点 B/D* 的扩增子(大小为 4 kbp)进行 Sanger 测序。使用引物 5' -agggaaaagagatgtgtaaaatactgt- 3', 5' -agatgaggaagggcatctgac- 3', 5' -tcaagttgtcattgtggtgaatt- 3', 5' - cagatgccagcgctaagacgat- 3', 5' -aggttattacacacccctcct- 3', 5' -tgttcattatcactggccatcaga- 3', 5' -aaggggaaacctcctgctactct- 3', 5' - tgcacccactaacgtgtcatcta- 3', 5' -gggttggttccaagtctttgcta- 3', 5' -gctgaaactggatcccttcctta- 制备连接点 D*/B* 的扩增子(大小为 13 kbp),进行 Sanger 测序。 3'、5' -tgtagggacatggatgaaattgg- 3' 和 5' -ccaaacaccgcatattctcactc- 3'。为了分析 P3,进行了长距离 PCR(正向引物:5' -ttaccacgaaagagcaaacggtga- 3' 和反向引物:5' - aacgttattccttccagtcacccac- 3')。PCR 扩增后,根据制造商的方案(SQK -LSK109,Oxford Nanopore),制备 9 kbp 大小的扩增子以在 MinION 106D 流动槽上进行测序。对于家族检测,建立了 PCR,使用倒位特异性引物 5' -tgcctctgcttaataggaagttttgg- 3' 和 5' - cagccaataacgtgagtttaggagt- 3'(产生 1247 bp 扩增子),以及野生型引物 5' - cagccaataacgtgagtttaggagt- 3' 和 5' -ctgttgaaggacacaagctctggc- 3'(产生 778 bp 扩增子)(见 S.3)。MLPA 分析进行多重连接依赖性探针扩增 (MLPA) 以验证在 CMA 中检测到的增益并测试亲属的携带者状态。对于 MLPA,将 DNA 与探针杂交并根据制造商的说明进行扩增。使用 Hitachi 3500xL 基因分析仪(Thermo Fisher)对扩增的 DNA 进行片段分析,并使用 SeqPilot(JSI,德国埃滕海姆)分析程序处理数据。用于所呈现的临床病例的 MLPA 探针组是 P034-B2、P035-B1(P1)和 P216-C1(P3)(MRC-Holland,荷兰阿姆斯特丹)。5' -tgtagggacatggatgaaattgg- 3' 和 5' -ccaaacaccgcatattctcactc- 3'。为了分析 P3,进行了长距离 PCR(正向引物:5' -ttaccacgaaagagcaaacggtga- 3' 和反向引物:5' - aacgttattccttccagtcacccac- 3')。PCR 扩增后,根据制造商的方案(SQK -LSK109,Oxford Nanopore),制备 9 kbp 大小的扩增子以在 MinION 106D 流动池上进行测序。对于家族检测,建立了 PCR,使用倒位特异性引物 5' -tgcctctgcttaataggaagttttgg- 3' 和 5' - cagccaataacgtgagtttaggagt- 3'(产生 1247 bp 扩增子),以及野生型引物 5' - cagccaataacgtgagtttaggagt- 3' 和 5' -ctgttgaaggacacaagctctggc- 3'(产生 778 bp 扩增子)(见 S.3)。MLPA 分析进行多重连接依赖性探针扩增 (MLPA) 以验证在 CMA 中检测到的增益并测试亲属的携带者状态。对于 MLPA,将 DNA 与探针杂交并根据制造商的说明进行扩增。使用 Hitachi 3500xL 基因分析仪(Thermo Fisher)对扩增的 DNA 进行片段分析,并使用 SeqPilot(JSI,德国埃滕海姆)分析程序处理数据。用于所呈现的临床病例的 MLPA 探针组是 P034-B2、P035-B1(P1)和 P216-C1(P3)(MRC-Holland,荷兰阿姆斯特丹)。5' -tgtagggacatggatgaaattgg- 3' 和 5' -ccaaacaccgcatattctcactc- 3'。为了分析 P3,进行了长距离 PCR(正向引物:5' -ttaccacgaaagagcaaacggtga- 3' 和反向引物:5' - aacgttattccttccagtcacccac- 3')。PCR 扩增后,根据制造商的方案(SQK -LSK109,Oxford Nanopore),制备 9 kbp 大小的扩增子以在 MinION 106D 流动池上进行测序。对于家族检测,建立了 PCR,使用倒位特异性引物 5' -tgcctctgcttaataggaagttttgg- 3' 和 5' - cagccaataacgtgagtttaggagt- 3'(产生 1247 bp 扩增子),以及野生型引物 5' - cagccaataacgtgagtttaggagt- 3' 和 5' -ctgttgaaggacacaagctctggc- 3'(产生 778 bp 扩增子)(见 S.3)。MLPA 分析进行多重连接依赖性探针扩增 (MLPA) 以验证在 CMA 中检测到的增益并测试亲属的携带者状态。对于 MLPA,将 DNA 与探针杂交并根据制造商的说明进行扩增。使用 Hitachi 3500xL 基因分析仪(Thermo Fisher)对扩增的 DNA 进行片段分析,并使用 SeqPilot(JSI,德国埃滕海姆)分析程序处理数据。用于所呈现的临床病例的 MLPA 探针组是 P034-B2、P035-B1(P1)和 P216-C1(P3)(MRC-Holland,荷兰阿姆斯特丹)。
应将对应关系发给BSA(balpreet.singh.ahluwalia@uit.no)结构化照明显微镜(SIM),可在高速下对亚细胞结构进行实时细胞超分辨率成像。目前,Linear Sim使用自由空间光学器件以所需的光图形来照亮样品,但是这种布置容易错过一致性,并为显微镜增加了成本和复杂性。在这里,我们提出了一种基于光子芯片的替代2D SIM方法,其中显微镜中的常规玻璃样品载玻片被平面光子芯片所取代,该平面光子芯片既可以固定并照亮样品。光子芯片将SIM的光照明路径的足迹降低到约4x4 cm 2。芯片上的一系列光学波导以不同的角度创建了站立的干扰模式,从而通过evanevanevanecent磁场照亮了样品。高折射率氮化硅波导允许在成像空间分辨率中增强2.3倍,超过了SIM的通常2x极限。总而言之,CSIM提供了一种简单,稳定且负担得起的方法,用于在大型视野上执行2D超分辨率成像。光学显微镜的空间分辨率通过衍射有效地限制了可实现的分辨率横向约250 nm,而轴向为500 nm的1,2。超级分辨率荧光显微镜的出现(通常称为纳米镜检查)证明了欺骗衍射极限的能力,将显微镜的横向分辨率向下延伸到只有几个纳米3。因此,超分辨率成像的下一个飞跃可以通过增加纳米镜方法的吞吐量来实现。在现有的光学纳米镜检查方法4-8中,结构化照明显微镜(SIM)9,10对于大多数明亮的荧光团作品。,而不是在SIM中照亮样品,而是在SIM中照亮了正弦激发模式,可以照亮样品,并在摄像机上捕获荧光发射。通常使用样品平面上的两个或三个梁的干扰来生成正弦激发光。通过乘法在频率空间中代表卷积,混合了两个函数的空间频率,在样品平面上结合了照明和对象函数。以这种方式,由于频率下转换与所得荧光发射为Moiré边缘模式,因此在物镜的通过频带的通过频带下方可以提供高频,未解决的内容。要从Moiré模式中提取高频含量,需要三到五个相移的结构化照明才能改善沿一个轴的分辨率。对于各向同性分辨率,必须重复该过程的激发模式的3个方向(角度),对于2D(3D)SIM重构,总共有9(15)个图像。由于SIM只需要9(15 for 3d)图像即可在广泛的视野上创建一个超分辨率图像,因此此方法本质上是快速的,这使其成为实时细胞光学纳米镜检查的最流行方法之一。,尽管STED和SMLM方法在单个单元格的水平上提供了出色的图像,但是当需要许多细胞的高速图像以建立统计影响时,这些技术会遭受低吞吐量。在常规模拟中,照明和开发高分辨率方法,例如刺激激发耗竭(STED)显微镜技术4,5和单分子定位显微镜(SMLM)6-8,从而使分辨率降低到几十纳米量,在生命科学中发现了新的发现可能性。在现有的超分辨率显微镜技术中,SIM提供了最快的时间分辨率,并且与标准标签和低光毒性的兼容性SIM方法指向实际高通量纳米镜检查方向。为了充分利用快速SIM成像技术的实用性,可实现的空间分辨率,方法的吞吐量和SIM的系统复杂性需要改进。
Vanadis ® 遗传咨询 强烈建议在胎儿筛查或产前诊断之前进行遗传咨询,以便让接受检测的人了解该检测对特定个体的优势和局限性。 定义 非整倍体:正常的人体细胞有 23 对染色体。人体细胞中染色体数目异常称为非整倍体。这包括三体性(存在额外的染色体)或单体性(缺少一条染色体)。非整倍体会影响任何染色体,包括性染色体。唐氏综合症(21 三体)是一种常见的非整倍体。帕陶综合症(13 三体)和爱德华综合症(18 三体)是其他值得注意的非整倍体 [美国妇产科医师学会 (ACOG) 词典,2024]。无细胞胎儿 DNA (cffDNA 或 cfDNA):来自胎盘的胎儿 DNA 小片段,可在孕妇血液中自由移动。这些片段可通过非侵入性产前筛查测试进行分析。(ACOG 词典,2024 年)。比较基因组杂交 (CGH):CGH 是一种可用于检测基因组拷贝数变异 (CNV) 的技术。测试可以使用各种探针或单核苷酸多态性 (SNP) 来提供拷贝数和基因区分信息。所有平台的共同点是,个体和参考 DNA 都用染料或荧光探针标记并在阵列上杂交。然后,扫描仪测量探针之间的强度差异,并将数据表示为比参考 DNA 具有更大或更小的强度(South 等人,2013 年)。大规模并行测序 (MPS):也称为下一代测序 (NGS) 以及大规模并行散弹枪测序 (MPSS),该技术允许在玻璃载玻片或珠子等固体表面上同时对多个基因进行测序 (Alekseyev et al., 2018)。镶嵌现象:细胞分裂错误可能导致个体拥有两个或多个具有不同染色体的不同细胞群。一个例子是镶嵌特纳综合征,由于染色体丢失,一些细胞是 46,XX,而另一些细胞是 45,X (MedlinePlus, 2022a)。下一代测序 (NGS):可以同时快速分析多个 DNA 片段的新型测序技术。旧形式的测序只能一次分析一个 DNA 片段 (Alekseyev et al., 2018)。无创产前检测/筛查 (NIPT/NIPS):用于描述不同类型 cffDNA 分析的常用术语 (Allyse and Wick, 2018)。共享决策 (SDM):SDM 是医生和个人共同选择最能反映临床证据和个人价值观和偏好的治疗方案的过程 (Armstrong and Metlay, 2020)。单核苷酸多态性 (SNP):个体 DNA 中的微小变异大约每 1,000 个核苷酸就会发生一次。这些微小的差异,即 SNP,通常不会对健康或发育产生影响,但有助于识别 DNA 中的特定染色体位置(MedlinePlus,2022b)。13 三体综合征(帕陶综合征):一种具有额外 13 号染色体的染色体疾病。它与多种先天性异常和严重的发育迟缓有关。大多数婴儿在出生后的第一个月内死亡,只有 5-10% 的婴儿能活过第一年。母亲年龄越大,生下患有 13 三体综合征的孩子的风险就越大(MedlinePlus,2021a)。18 三体综合征(爱德华氏综合征):一种具有额外 18 号染色体的染色体疾病。它与多种先天性异常和发育迟缓有关。大多数婴儿在出生后的第一年内死亡,只有 5-10% 的婴儿能活过第一年。生下患有 18 三体综合征的孩子的风险会随着母亲年龄的增长而增加(MedlinePlus,2021b)。
应迅速接受患者。关于NCCT图像的另一个问题,强度的范围非常宽且稀疏。需要在适合分类器的合适范围内重新销售。在本文中,我们旨在找到合适的窗口设置,用于通过使用Inpection v3在没有CTP的情况下对NCCT图像中缺血性中风的超急性和急性相分类。数据集以轴向切片制备。每个载玻片分类为正常或病变。由于训练样本的限制,将转移学习用于模型的重量初始化。结果表明该模型可以在35时窗口级别表现良好,而窗口宽度为95,90.84%的精度。关键字超急性缺血性中风,急性缺血性中风,非对比度颅骨计算机断层扫描,窗户CT,图像分类1。引言1.1研究中风的背景是全球死亡的第二大原因。在泰国,中风成为死亡或功能障碍的第一个原因。缺血性中风和出血中风是主要原因。缺血性中风是由凝块引起的,该凝块导致大脑的血液供应低(Musuka等人2015)。它分为四个阶段:超急性,急性,亚急性和慢性梗塞(Pressman BD和Tourje EJ 1987)(Nakano s and iseda t 2001)。但是,如果检测到较早的中风,它可能会增加生存和恢复的机会。神经影像受到医生的诊断。在泰国,CT被广泛使用,因为成本比MRI便宜。有许多类型的神经成像,例如磁共振成像(MRI)和计算机断层扫描(CT)。它成为诊断标准并广泛可用(Barber Pa等。2005),(Kidwell CS等人 1999)。 图像内容由称为Hounsfield单元(HU)的定量刻度表示,可以使用窗口过程将其映射到颜色尺度。 有两个参数可以调整以显示不同的组成,窗口级别(WL)和窗口宽度(WW)(Osborne等人。 2016),(Melisa Sia 2020),(Xue等人 2012)尽管CT快速又便宜,但仍有一个限制。 视觉上识别超急性和急性期中风的病变和位置的难度是问题,因为病变看起来与正常组织相似。 以这种方式,一种称为计算机断层灌注(CTP)的技术可间接显示出流向脑实质的流动或状态(Mortimer等人, 2013)使用造影剂。 不幸的是,这项技术的局限性是专家,每家医院都可能无法使用。 因此,对医学图像深度学习的最新研究的大多数研究都旋转了深度学习模型对有助于解释多种疾病诊断的病变进行分类或分割的能力(Clèrigues等 2019),(Cheon等人 2019),(Meier等人 2019),(Mirtskhulava等人 2015),脑肿瘤(Nadeem等人 2020),肺癌(Weng等人 2017),Retina(Christopher等人 2018)。2005),(Kidwell CS等人1999)。 图像内容由称为Hounsfield单元(HU)的定量刻度表示,可以使用窗口过程将其映射到颜色尺度。 有两个参数可以调整以显示不同的组成,窗口级别(WL)和窗口宽度(WW)(Osborne等人。1999)。图像内容由称为Hounsfield单元(HU)的定量刻度表示,可以使用窗口过程将其映射到颜色尺度。有两个参数可以调整以显示不同的组成,窗口级别(WL)和窗口宽度(WW)(Osborne等人。2016),(Melisa Sia 2020),(Xue等人 2012)尽管CT快速又便宜,但仍有一个限制。 视觉上识别超急性和急性期中风的病变和位置的难度是问题,因为病变看起来与正常组织相似。 以这种方式,一种称为计算机断层灌注(CTP)的技术可间接显示出流向脑实质的流动或状态(Mortimer等人, 2013)使用造影剂。 不幸的是,这项技术的局限性是专家,每家医院都可能无法使用。 因此,对医学图像深度学习的最新研究的大多数研究都旋转了深度学习模型对有助于解释多种疾病诊断的病变进行分类或分割的能力(Clèrigues等 2019),(Cheon等人 2019),(Meier等人 2019),(Mirtskhulava等人 2015),脑肿瘤(Nadeem等人 2020),肺癌(Weng等人 2017),Retina(Christopher等人 2018)。2016),(Melisa Sia 2020),(Xue等人2012)尽管CT快速又便宜,但仍有一个限制。视觉上识别超急性和急性期中风的病变和位置的难度是问题,因为病变看起来与正常组织相似。以这种方式,一种称为计算机断层灌注(CTP)的技术可间接显示出流向脑实质的流动或状态(Mortimer等人,2013)使用造影剂。不幸的是,这项技术的局限性是专家,每家医院都可能无法使用。因此,对医学图像深度学习的最新研究的大多数研究都旋转了深度学习模型对有助于解释多种疾病诊断的病变进行分类或分割的能力(Clèrigues等2019),(Cheon等人 2019),(Meier等人 2019),(Mirtskhulava等人 2015),脑肿瘤(Nadeem等人 2020),肺癌(Weng等人 2017),Retina(Christopher等人 2018)。2019),(Cheon等人2019),(Meier等人2019),(Mirtskhulava等人2015),脑肿瘤(Nadeem等人2020),肺癌(Weng等人2017),Retina(Christopher等人 2018)。2017),Retina(Christopher等人2018)。2018)和乳腺癌(Chougrad等人 尽管诊断解释的发展模型是具有挑战性的任务,但非解释性问题(例如增强图像和发展工作流程)也有助于改善患者的结果(Richardson等人。2018)和乳腺癌(Chougrad等人尽管诊断解释的发展模型是具有挑战性的任务,但非解释性问题(例如增强图像和发展工作流程)也有助于改善患者的结果(Richardson等人。2020)也可以在此任务中应用深度学习来实现治疗的最终目标。纸张的其余部分如下组织。CT窗口上的先前工作可以在第1节中找到。第2节阐明了研究的目的。第3节介绍了建议的方法,数据集,CT窗口过程,本工作中应用的分类。在第4节中解释了实验结果的细节,结论是在第5节中。1.2计算机断层扫描中的文献综述(CT)被称为评估梗塞中风的方式。窗口级别(WL)和窗口宽度(WW)的值是具有诊断准确性的重要因素。它可以揭示患者大脑的微妙异常。通常,CT图像上的默认脑窗口设置为40,窗口宽度为80(EE等人。2017),但是这个窗口很难审查梗塞,尤其是在中风的早期。因此,许多作品都在选择适当的窗口级别的合适值,并提出了检测缺血性中风的窗口宽度。
微生物学基础:临床方法 - 第三版 由 Johana Meléndez 教授等编写 医学微生物学简介,作者:Andrew Dodgson 博士 本书是了解医学微生物学的综合资源,涵盖了基本概念和临床方法。 关键概念包括: - 研究导致人类疾病的微生物(病毒、细菌、真菌和寄生虫) - 正常菌群:人体皮肤和粘膜上有益微生物的存在 - 污染:培养物中存在在采集样本时不存在的生物 - 定植:生物在某个部位存在但没有引起疾病或症状 - 感染:生物侵入身体部位、繁殖并引起组织反应、症状或疾病 将生物分类为界、门、属、种对于理解医学微生物学也至关重要。其中包括: - 病毒:体型小,无法独立复制,难以治疗(例如流感、艾滋病毒/艾滋病) - 细菌:能够独立复制,导致医院中见到的大多数感染,并用抗生素治疗 - 真菌:复杂、大型生物,也会导致疾病(例如肺炎、尿路感染) 了解这些概念对于医疗保健专业人员有效地诊断、预防和治疗感染至关重要。 细菌可分为真菌和霉菌,导致一系列疾病,例如鹅口疮、足癣、侵袭性和过敏性曲霉病。许多疾病都是机会性的。 对细菌进行分类至关重要,因为不同类型的细菌会导致不同的疾病,并且对抗生素有不同的反应。为了对细菌进行分类,我们根据它们的微观外观对它们进行分组,然后根据生化反应等特性进一步将它们分为不同种类。 革兰氏染色法通过使用结晶紫和其他化学物质对载玻片进行染色来帮助区分细菌。这种方法可以确定细菌是革兰氏阳性还是革兰氏阴性,这会影响其抗生素耐药性。革兰氏染色还提供有关细菌细胞壁形状的信息,将它们分为四个主要类别:G+ 杆菌、G+ 球菌、G- 杆菌和 G- 球菌。这种初步鉴定对于诊断疾病和选择适当的抗生素很有用。 微生物学是研究微生物(包括细菌、病毒、真菌和其他微观生命形式)的科学分支。医学微生物学领域专门研究人类传染病的原因和影响。 微生物分类 ----------------------------- 微生物分为几类: * **原生生物**:包括原生动物等单细胞生物的群体。 * **病毒**:此类包括病毒,它们是可导致人类传染病的非细胞生命系统。 * **DNA 病毒和 RNA 病毒**:病毒类别的子类别,以其遗传物质(DNA 或 RNA)区分。 * **真核生物**:包括单细胞真核生物(如藻类和原生动物)的群体。 * **原核生物**:此类别包括细菌,即没有细胞核的原核细胞。 * **真菌**:一类微生物,包括对人类有致病性的真菌。 * **蓝藻**:蓝藻的一个子类别。 * **藻类**:一组光合真核生物。 * **细菌**:此类包括革兰氏阴性细菌,其具有特征性的细胞壁结构,由外膜和含有胞壁酸的薄内肽聚糖层组成。 * **原生动物**:原生生物的一个子类别,包括对人类有致病性的单细胞动物生物。细菌类内的分类 --------------------------- -- 细菌类进一步分为三个亚类: 1. **暗细菌**:此类细菌的细胞壁为革兰氏阴性,由外膜和含有胞壁酸的薄内肽聚糖层组成。 2. **无氧光合细菌和有氧光合细菌**:暗细菌亚类的子类别。 微生物命名法 ------------------------------ 在微生物学中,使用二名法来识别物种。该系统为每种物种分配一个通用名称和一个特定名称。例如,*炭疽芽孢杆菌* 和 *破伤风梭菌* 分别是炭疽杆菌和破伤风杆菌的科学名称。 细菌的大小 ------------------ 细菌的大小通常以微米 (μm) 或毫米 (mm) 为单位。大多数致病菌的尺寸在 0.1 到 10 μm 之间。用于测量微生物的其他单位包括纳米和埃。 细菌的形态 ------------------------- 细菌是通过二分裂繁殖的原核细胞,二分裂是一种无性繁殖,细胞分成两个相同的子细胞。它们同时具有 DNA 和 RNA,可根据形状进行分类: 1. **球形(球菌)**:此类细菌呈球形。 2. **杆状(细菌、杆菌和梭菌)**:细菌类的子类别,包括长度不一的杆状体。 3. **螺旋形(弧菌、螺旋体、螺旋体)**:杆状细菌的一个子类别。 淋病奈瑟菌的电子显微照片 ---------------------------------------------- 电子显微照片是使用电子显微镜拍摄的高分辨率图像。这张显微照片显示的是*淋病奈瑟菌*的形态,它是一种导致淋病的致病菌。杆状细菌的排列 -------------------------------------- 杆状细菌可以排列成不同的形状,包括: 1. **单杆**:单个杆状细菌。 2. **链杆菌**:一种具有特征形状的杆状细菌。螺旋形式 ---------- ---- 弧菌是一种螺旋状的细菌,外观类似逗号。细菌有各种形式,包括霍乱弧菌和螺旋体,它们都是盘绕的形状。致病菌种如小螺旋体会导致鼠咬热,而幽门螺杆菌会导致胃溃疡。螺旋体是一类细菌,包括密螺旋体、钩端螺旋体和伯氏疏螺旋体,其特征是细胞薄而柔韧,有规则的扭曲。细胞壁对于细菌的刚性和渗透保护至关重要,由革兰氏阳性菌中的肽聚糖组成。所讨论的细菌不能运动,也没有荚膜,属于革兰氏阴性。它们对各种抗生素高度敏感,需要活细胞才能在其中繁殖。从形态上看,这些立克次体与某些细菌有相似之处,具有包围原生质物质和致密颗粒的限制膜。另一方面,衣原体也是革兰氏阴性菌,缺乏必要的能量产生机制,因此是细胞内寄生虫。它们表现出两种不同的形态:原生体和初始体。实验室诊断采用多种方法:1. 细菌镜检 2. 常规细菌学检测 3. 抗生素敏感性检测,以检测细菌对药物的反应 4. 血清学评估抗体存在 5. 生物技术,用于识别特定的生物过程 6. DNA 技术检测,如 PCR(聚合酶链反应),可检测各种生物体的 DNA 或 RNA,例如 HIV。血清学评估抗体的存在 5. 用于识别特定生物过程的生物技术 6. DNA 技术测试,如 PCR(聚合酶链反应),可检测来自各种生物体(例如 HIV)的 DNA 或 RNA。血清学评估抗体的存在 5. 用于识别特定生物过程的生物技术 6. DNA 技术测试,如 PCR(聚合酶链反应),可检测来自各种生物体(例如 HIV)的 DNA 或 RNA。
