摘要近年来,量子玻尔兹曼的方法越来越兴趣,因为一旦这种新兴的计算技术已经成熟且容易耐断层的多位系统,它们可能会为解决量子计算机上的流动动力学问题提供可行的途径。为Boltzmann方程开发一种开始端量量子算法的主要挑战包括在量子位(Qubits)中足够编码相关的数据以及将流,碰撞和重新跨度步骤制定为一个全面的不稳定操作。当前有关量子Boltzmann方法的文献主要提出了有关管道各个阶段的数据编码和量子原始,假设它们可以将其合并到完整的算法中。在本文中,我们通过证明文献中常见的编码来反驳这一假设,无论是碰撞还是流动步骤都不是统一的。在这个里程碑式的结果上构建,我们提出了一种新颖的编码,其中用来编码速度的量子数的数量取决于人们希望模拟的时间步骤的数量,其上限取决于网格点的总数。鉴于为现有编码建立的非非军事结果,我们的编码方法是我们所知的最好的方法,目前唯一可用于启动量子boltzmann求解器的唯一已知方法,碰撞和流步骤均以单一操作实现。鉴于为现有编码建立的非非军事结果,我们的编码方法是我们所知的最好的方法,目前唯一可用于启动量子boltzmann求解器的唯一已知方法,碰撞和流步骤均以单一操作实现。
Quantum机器学习(QML)是一个新兴的研究领域,主张使用量子计算来进步机器学习。由于发现了参数变化量子电路(VQC)以替换人工神经网络的可容纳能力,因此它们已被广泛采用以在量子机学习中的不同任务中采用。然而,尽管它们有可能超过神经网络,但VQC限于量子电路可伸缩性的挑战,仅限于小规模应用。为了解决这个缺点,我们提出了一种算法,该算法使用张量环表示在电路中压缩量子状态。使用张量环表示中的输入Qubit状态,单量子门保持张量环表示。但是,对于两个Qubit门而言,情况并非如此,其中使用近似值将输出作为张量环表示。使用此近似值,与精确的仿真算法相比,与指数增加相比,存储和计算时间在量子数和层数中线性增加。此近似值用于实现张量环VQC。使用基于梯度下降的算法进行张量环VQC参数的训练,其中使用了反向传播的效果方法。在两个数据集上评估了所提出的方法:分类任务的虹膜和MNIST,以使用更多量子位来显示提高准确性。关键字:变分量子电路,张量网络,有监督的学习,classifation我们使用各种电路架构实现了虹膜数据集的测试精度为83.33%,MNIST数据集的二进制和三元分类为99.30%和76.31%。IRIS数据集的结果优于Qiskit上的VQC上的结果,并且可扩展,这证明了VQC用于大规模量子机器学习应用程序的潜力。
Quantum机器学习(QML)已成为一个有前途的领域,它依靠量子计算中的发展来探索大型复杂的机器学习问题。最近,提出了一些纯量子机学习模型,例如量子卷积神经网络(QCNN),以对量子数据进行分类。但是,所有现有的QML模型都取决于对大规模和分布式量子网络无法很好地扩展的集中解决方案。因此,考虑到针对新兴的量子网络体系结构量身定制的更实用的量子联合学习(QFL)解决方案是一种方法。的确,鉴于计算量子的脆弱性质以及传输它们的困难,为量子网络开发QFL框架至关重要。在其实际的重要性之上,QFL可以通过利用现有的无线通信基础架构来分发量子学习。本文提出了第一个完全量子联合学习框架,该框架可以通过量子数据运行,因此以分散的方式共享量子电路参数的学习。首先,鉴于文献中缺少现有的量子联合数据集,提出的框架开始于生成具有分布式量子网络的第一个量子联合数据集,具有层次数据格式。然后,为共享QCNN模型的客户提供量子数据以执行分类任务。随后,服务器从客户端汇总了可学习的量子电路参数并执行联合平均。进行了广泛的实验,以评估和验证所提出的QFL溶液的有效性。这项工作是将Google的TensorFlow联合和TensorFlow量子组合到实际实现中的第一个。
1. 微观物质的波粒二象性。经典力学无法描述原子和分子的结构。光和能量的量子。波粒二象性。德布罗意波及其实验观测。2. 薛定谔方程。微分方程。微观粒子的薛定谔方程。复数和复函数。概率和概率密度。波函数及其物理解释。算符、特征函数和特征值。汉密尔顿量。3. 自由和受限电子的平移运动。自由粒子。一维、二维和三维势箱中的粒子。盒中粒子模型的化学应用。化学键的矩形盒模型。穿过势垒的量子隧穿。4. 量子化学的数学形式。物理可观测量的算符。量子力学的假设。波函数的叠加。个体测量和期望值。交换和非交换算子。海森堡不确定性原理。跃迁偶极矩。光谱跃迁的强度。选择规则。5. 振动运动的量子力学描述。谐振子。谐振子的薛定谔方程。谐振子和双原子分子振动之间的联系。振动跃迁的选择规则。6. 旋转运动的量子力学描述。环中粒子的薛定谔方程。二维和三维旋转。角动量及其量化。球谐函数。双原子分子的刚性转子和旋转光谱。7. 氢原子的结构和光谱。单电子原子和离子的薛定谔方程。氢原子的能级、电子波函数和概率密度。原子轨道和量子数。自旋。8. 多电子原子。多电子波函数的轨道近似。自洽场。泡利不相容原理。构造原理和元素周期表。
摘要 - Quantum机器学习(QML)是一个加速研究领域,它利用量子计算的原理来增强和创新机器学习方法论。然而,嘈杂的中间尺度量子(NISQ)计算机遭受噪声损坏量子的量子状态并影响训练和推断准确性。此外,量子计算机具有长期访问队列。单个执行预定量的镜头可能需要花费数小时才能达到等待队列的顶部,这对于迭代本质上是迭代性的量子机器学习(QML)算法尤其不利。许多供应商都提供了具有各种量子技术,量子数,耦合体系结构和噪声特征的量子硬件套件。但是,当前的QML算法不会将其用于培训程序,并且由于成本和培训时机在真实硬件上的开销而经常依靠本地噪音/嘈杂的模拟器。此外,通常在较少数据点的还原数据集上执行推断。考虑到这些约束,我们进行了一项研究,以最大程度地基于硬件选择的选择来最大程度地提高QML工作负载的推论性能。具体来说,我们在虹膜上对量子分类器(通过硬件队列等待时间的训练和推断)进行了详细的分析,并在噪声和不同条件下的数字数据集(例如不同的硬件和耦合图)上进行了减少的数字数据集。我们表明,使用多个随时可用的硬件进行培训,而不是依靠单个硬件,尤其是如果它具有长期排队的工作深度,则可以导致只有3-4%的绩效影响,同时降低了训练等待时间的45倍。
摘要。心脏病的发病率和死亡率正在增加,这对公共卫生和全球经济产生了负面影响。心脏病的早期发现降低了心脏死亡率和发病率的发生率。最近的研究利用量子计算方法来预测5个以上的心脏病,并且在计算中进行了密集。尽管量子数数量较高,但较早的工作报告说,预测心脏病的准确性较低,没有考虑到异常效应,并且需要更多的计算时间和记忆来预测心脏病。为了克服这些局限性,我们建议使用几个量子位(2至4个)(2至4)提出混合随机森林量子神经网络(HQRF),并考虑了数据集中异常值的影响。在本研究中使用了两个开源数据集Cleveland和Statlog应用量子网络。所提出的算法已应用于两个开源数据集,并利用了两种不同类型的测试策略,例如10倍的交叉验证和70-30列车/测试率。我们将我们提出的方法论的性能与较早的算法(称为杂交量子神经网络(HQNN))的算法进行了比较。HQNN和HQRF在10倍的交叉验证和70/30列车/测试拆分率中的表现均优胜。结果表明,HQNN需要大型培训数据集,而HQRF更适合大型和小型培训数据集。根据实验结果,与HQNN相比,提出的HQRF对异常数据不敏感。与较早的作品相比,拟议的HQRF在使用Cleveland和Statlog数据集的预测心脏病方面的曲线(AUC)下达到了96.43%和97.78%的最大面积,使用HQNN。所提出的HQRF在早期检测心脏病方面非常有效,并将加快临床诊断。
对称性是一种不变性:数学对象在一系列运算或变换下保持不变的性质。物理系统的对称变换是理解自然物理定律的基石之一。以恒定相对速度运动的观察者之间的对称性使伽利略提出了相对论原理,为现代物理学的基础提供了初步见解。正是控制麦克斯韦方程的对称性,即洛伦兹群,使爱因斯坦将伽利略的思想推广到狭义相对论,这是我们理解基本粒子运动学以及原子核稳定性的基础。在量子领域,由于自旋和统计学之间的深层联系,人们可以从对称性开始解释元素周期表。从更现代的角度来看,洛伦兹群的表示理论为开始组织相对论量子场理论提供了起点。基本粒子的量子数由对称群组织。对称群与规范对称性、自发对称性破缺和希格斯机制一起被用来构建基本粒子的标准模型,这是 20 世纪最伟大的科学成就之一。随着与扩展算子相关的各种新型对称性的发现,量子场论的最新研究正在经历一场进一步的革命。这些广义全局对称性 [1] 包括高阶形式对称性、范畴对称性(如高阶群对称性或不可逆对称性),甚至更普遍的子系统对称性等。这些新颖的对称性从根本上扩展了以前仅仅基于李代数和李群数学的标准对称概念,它们基于更先进的数学结构,概括了高阶群和高阶范畴。广义对称性有望对我们理解从凝聚态物理学到量子信息、高能物理学甚至宇宙学等各个物理学领域相关的量子场动力学产生深远的影响。1
本论文概述了量子电路中的双统一门的使用(量子门的特殊子集),尤其是将双重统一电路用作量子计算机的基准。由于对模拟器进行基准测试,只能以较低的量子位进行基准计算机,然后才能在国家向量表示的增强性质使得这一计算上的昂贵,因此需要更有效的基准测试。双统一门的电路是这样的良好候选者,因为对于某些电路来说,存在一个分析解决方案,其计算复杂性不会随量子数的数量扩展,并且仅涉及4×4矩阵上的矩阵操作。为了将该属性的有用性扩展到更多电路,对双统一电路进行了进一步的概括,以包括混合双重单位的电路以及更高维度的多军人。的确,一个自我的四分之一门 - 即在三个方向上找到一个量子门统一。检查是否可以通过这些电路构建有用的基准测量场景,将双重统一电路与量子计算机模拟器上的分析解决方案进行比较,并发现可以确定双重统一电路的适用性作为基准。要从理想化的有限网格到模拟器的步骤,必须将周期性的边界条件添加到原始网格中。要实现在量子计算机上使用基准测试的目标,从模拟器到量子计算机的步骤中,必须对实现进行一些更改。讨论了一些方法。这包括更改定期边界条件的实施。同样,与模拟器上的实现相反,必须找到一种评估量子计算机上的跟踪的方法。总而言之,即使对于某些问题(尤其是痕量评估),必须找到一种更有效的方法,才能在此基准方案中找到一种更有效的方法。
摘要:随着物联网技术的发展,我们的生活中正在使用许多传感器设备。为了保护此类传感器数据,应用了轻质块密码技术,例如Speck-32。但是,还研究了这些轻型密码的攻击技术。块密码具有不同的特征,这些特征在概率上是可以预测的,因此已使用深度学习来解决此问题。自GOHR在加密货币2019年的工作以来,已经对基于深度学习的杰出者进行了许多研究。当前,随着量子计算机的开发,量子神经网络技术正在开发。量子神经网络也可以像经典的神经网络一样学习并对数据进行预测。但是,当前的量子计算机受许多因素(例如,可用量子计算机的规模和执行时间)的限制,这使量子神经网络很难超越经典的神经网络。量子计算机比经典计算机具有更高的性能和计算速度,但这在当前的量子计算环境中无法实现。然而,找到未来量子神经网络在技术开发中起作用的领域非常重要。在本文中,我们提出了NISQ中块密码Speck-32的第一个基于量子神经网络的区别。我们的量子神经差异化因素即使在受约束条件下也成功进行了多达5轮。此外,我们对影响量子神经区分因子性能的各种因素进行了深入分析。由于我们的实验,经典神经区分器的精度为0.93,但是由于数据,时间和参数的限制,我们的量子神经区分剂的精度为0.53。由于环境受到约束,它不能超过经典神经网络的性能,但是它可以作为区别者起作用,因为它的精度为0.51或更高。因此,确定了嵌入方法,量子数和量子层等具有效果。事实证明,如果需要一个高容量的网络,我们必须正确调整,以考虑电路的连接性和复杂性,而不仅仅是添加量子资源。将来,如果有更多的量子资源,数据和时间可用,则可以通过考虑本文提出的各种因素来设计实现更好性能的方法。
量子状态之间最突出的可区分性指标是痕量距离,量子填充性和量子相对熵,并且它们都具有单位不变的特性[1-3]。该特性的基本结果是,具有正交支撑的任何两个量子状态之间的距离始终是最大的。但是,此属性并不总是可取的。对于某些应用,自然可以使用状态| 0⟩n更接近| 1 | 0⟩(n -1)比| 1⟩n。某些理想的特性可以恢复规范基础向量的锤距,以及对输入状态上局部扰动的更一般性。这样的距离可能会为von Neumann熵提供更好的连续性边界,因为von Neumann熵在局部扰动上也很强。尤其是,一个量子器上的任何操作最多都可以通过LN 4更改状态的熵,这不取决于量子数的数量。因此,在此操作后,具有初始熵o(n)的N量状状态的熵保持O(n)。但是,这种连续性属性无法通过任何单位不变的可区分性措施来捕获,因为单位操作可以将初始状态带入正交状态,从而导致单位不变的度量的最大可能更改。在度量空间上的经典概率分布的设置中,源自最佳质量运输理论的距离已成为上面特性的突出距离。他们的探索导致在数学分析中创造了极其富有成果的领域,其应用范围从不同的几何形状和部分差异方程式到机器学习[4-6]。给定两个质量或概率分布在度量空间上,并且给定指标空间的每个点之间移动单位质量的成本,最佳的质量传输理论为每个计划分配了将第一个分布运送到第二个分布的计划。在所有可能的运输计划中,最低成本定义了分布之间的最佳运输距离[4]。成本函数最突出的选择之一是公制空间上的距离,从而导致订单1的Wasserstein距离或W 1距离。