针对农产品库存不足,无法满足世界人口快速增长带来的粮食需求、气候变化导致农场动物适应困难、各种广泛传播的疾病等问题,每天都有新的解决方案出现。科学家普遍认为,利用最近发展的基因组编辑技术可以解决这些问题。基因组编辑是通过核酸酶在基因组的指定位置创建位点特异性DNA双链断裂(DSB),然后通过同源重组(HDR)或非同源重组(NHEJ)方法之一修复双链断裂,从而产生基因组改变的方法。将这些方法与胚胎移植技术相结合并应用于动物养殖的主要目的是提高产量和品质,以及提高动物福利和抗病能力。本研究旨在阐明基因组编辑方法及其在畜牧业中的应用领域。
间充质干细胞(MSC)是多素的成年干细胞,对基于细胞的再生疗法有很大潜力。体外扩展改变其表观遗传和细胞特性,对DNA损伤反应(DDR)和基因组稳定性的影响很差。我们在这里报告了基于转录组的基于转录组的途径分析的结果,该途径分析了体外 - 脱落的人骨骨髓衍生的间充质干细胞(HBM-MSC),并补充了针对DNA双链断裂(DSB)修复的细胞测定。使用基因,KEGG和GSEA映射受体外衰老影响的基因途径,并被发现涉及DNA修复,同源重组(HR),细胞周期控制和染色体复制。在HBM-MSC中对X射线诱导的X射线诱导的DNA DSB的识别(C-H2AX + 53BP1焦点)的测定表明,在8周的体外衰减期间(即10个双倍的时间),细胞表现出较高的DDRADNA ddra。此外,观察到对DNA DSB识别受损的细胞的明显亚群。通过HR(例如Rad51,Rad54,BRCA1)参与DNA修复中的几个基因显示2.3至四倍降低了QRT-PCR的mRNA表达。我们得出的结论是,HMSC的体外扩张会导致与DNA断裂的识别和修复的衰老相关损害。
deoxyribonicleclease I(DNase I)来自牛胰腺是一种核酸内切酶(糖蛋白),它优先裂解嘧啶核苷酸后面DNA的磷酸二酯键。这会导致具有5'-磷酸盐的多核苷酸,并且在3'位置为自由OH组。dnase I切割单链和双链DNA以及染色质。酶反应的特异性(单链 - “昵称”与双链断裂)由可用的离子确定。在存在MG2+单链迹线的情况下,会产生MN2+双链断裂。DNase I的pH- ph-最高为7.8,并且被二价阳离子激活。最大激活需要MG2+和其他Ca2+。钙离子(5mm)保护DNase I免受蛋白水解消化的影响。抑制作用,但如果锰是激活剂,则不能。此外,它也受到EDTA和SDS或ß-甲醇等螯合剂的抑制。
Prime编辑是一种“搜索和替换”基因编辑技术,可提供更精确的编辑,而无需产生双链断裂,从而降低了脱靶效应的风险,并使其成为基因和细胞疗法的CRISPR/CAS9的潜在更安全的替代品。
最近的研究揭示了 RNA 在修复 DNA 双链断裂中的作用。在这里,我们展示了小型 TevSaCas9 双核酸酶产生的不对称 DNA 悬垂为人类细胞中一种简单而强大的编辑策略提供了信息,即招募 Pol θ 和 Rad52 来修复双链断裂。TevSaCas9 的 I-TevI 核酸酶域产生的 2-nt、3' DNA 悬垂与共定位修复模板的 3' 端杂交,引导 RNA 特异性地许可修复。破坏修复双链稳定性的替换会降低编辑效率。靶向 RNA 模板修复(重复编辑)利用基于细胞 RNA 的 DNA 修复途径在人类细胞中引入精确的核苷酸编辑、删除和插入,具有高效率和保真度,与共同传递的修复功能无关。 TevSaCas9 和 RNA 修复模板的尺寸较小,与尺寸受限或多组分编辑系统相比具有传递优势。
简介根据欧洲心脏病学会最新的慢性冠状动脉综合征指南,冠状动脉疾病 (CAD) 被定义为具有稳定性心绞痛症状和/或呼吸困难的 CAD 记录。1 众所周知,DNA 损伤是该疾病发病的原因之一。通常,这些损伤以单碱基突变、链断裂、碱基缺失或碱基修饰的形式出现。2 DNA 修复机制在维持基因组完整性方面起着非常重要的作用。不同的 DNA 修复机制用于修复哺乳动物细胞中不同的 DNA 损伤。BRCA1 是乳腺癌和卵巢癌的关键易感基因。3 它由几个对维持基因组稳定性至关重要的结构域组成,例如 DNA 修复、DNA 损伤信号传导、染色质重塑、细胞周期检查点的调节、蛋白质泛素化、转录调控和细胞凋亡。 BRCA1 蛋白通过调节同源重组 (HR),在 DNA 双链断裂修复过程中发挥着至关重要的作用。4
‡ 通信地址:aashiq.kachroo@concordia.ca 关键词:基因组工程、CRISPR-Cas9、人源化酵母、蛋白酶体 缩写:CFU、菌落形成单位;DSB、双链断裂;HDR、同源定向 DNA 修复;HR、同源重组;CELECT、基于 CRISPR-Cas9 的选择以丰富基因型;MERGE、无标记富集和重组基因工程位点;SGA、合成遗传阵列
‡ 通信地址:aashiq.kachroo@concordia.ca 关键词:基因组工程、CRISPR-Cas9、人源化酵母、蛋白酶体 缩写:CFU、菌落形成单位;DSB、双链断裂;HDR、同源定向 DNA 修复;HR、同源重组;CELECT、基于 CRISPR-Cas9 的选择以丰富基因型;MERGE、无标记富集和重组基因工程位点;SGA、合成遗传阵列
使用三步方法评估了pH对DNA完整性的影响。该彗星测定在整个基因组水平上使用,具有三种不同的方案:中性(无碱性释放),Flash(pH 12.5,带有2.5分钟的放松)和常规的碱性方案(pH> 13具有40分钟的放松)。然后使用实时定量PCR(RT-QPCR)研究分离的DNA,表明基因扩增随pH值的增加而降低,表明DNA降解。专门设计的分子信标被用于检查分子水平的DNA,有或没有碱性位点(ALS)插入。在pH 12.5时,ALS发夹中的荧光在30分钟后开始增加,而在pH> 13时,在5分钟后已经观察到这种增加,表明DNA链断裂显着增加。还使用了液相色谱分析,恶魔表明,即使在1小时暴露1小时后,发夹仍保持完整直至pH 10,而在pH 12.5时,部分转化为链断裂,在30分钟后发生。在pH> 13时,发夹几乎在30分钟后几乎完全降解。闪存方案有效检测DNA单链断裂,并在pH 12.5时碱性处理2.5分钟后确定了这些损害。将发夹暴露于pH 12.5持续60分钟时,ALS转化为链断裂,证明了这种方法检测DNA结构变化的敏感性。这些发现表明,与更接近中性的条件相比,pH对DNA完整性构成了重大风险,导致DNA损伤的背景损害水平明显更高。我们的研究证明了了解pH对DNA稳定性的影响的重要性,并提供了对与碱性环境相关的风险的见解,尤其是在pH> 13。
通过基础编辑修饰的细胞疗法的制造,该基础编辑会产生高频率的生产效率,而不会产生双链断裂。该过程必须具有多种患者的灵活性和可变的起始细胞数量,同时保持健壮的细胞产量和高药物产品质量,并且适合在1/2阶段临床试验(NCT05456880)中使用。