n型有机电化学晶体管(OECT)和有机字段效应的晶体管(OFET)的发达较不如其P型对应物。在此中,据报道,含有新型氟乙烯烯酚 - 乙烯基 - 苯苯(FSVS)单位的聚二硫代二酰亚胺(PNDI)的共聚物是N型OECT和N型OTET的有效材料。与寡素(乙二醇)(EG7)侧链P(NDIEG7-FSVS)的PNDI聚合物,A效率为0.2 f cm-1 v-1 s-1的高μC*,超过了基准N-typ pg4ndi-t2和pgti-gti。- 4.63 eV的深层腔内p(ndieg7-fsvs)具有超低阈值电压为0.16 v。 MEV,在N型OFET中导致高高度电子迁移率高达0.32 cm 2 v-1 s-1。 这些结果表明,对于下一代效果N型有机电子产品,同时实现较低的Lumo和更紧密的分子堆积的巨大潜力。- 4.63 eV的深层腔内p(ndieg7-fsvs)具有超低阈值电压为0.16 v。 MEV,在N型OFET中导致高高度电子迁移率高达0.32 cm 2 v-1 s-1。这些结果表明,对于下一代效果N型有机电子产品,同时实现较低的Lumo和更紧密的分子堆积的巨大潜力。
摘要:为了检测生物分子,提出了基于介电调节的堆叠源沟槽闸门隧道效果晶体管(DM-SSTGTFET)的生物传感器。堆叠的源结构可以同时使状态电流较高,并且较低的状态电流较低。沟槽栅极结构将增加隧道区域和隧道概率。技术计算机辅助设计(TCAD)用于对拟议的结构化生物传感器的灵敏度研究。结果表明,DM-SSTGTFET生物传感器的当前灵敏度可以高达10 8,阈值电压灵敏度可以达到0.46 V,亚阈值秋千灵敏度可以达到0.8。由于其高灵敏度和低功耗,该提议的生物传感器具有很高的前景。
一些设计挑战[18,19]。有源电感使用晶体管构建,因此电压摆幅低于无源电感,因为晶体管需要较大的电压余量。并且晶体管的非线性特性使有源电感的电感阻抗随偏置点而变化[20]。当有源电感工作在相对较大的电压摆幅下时,输出阻抗的变化很大。为了增加输出电压摆幅,做了一些其他的工作[21-23]。它们克服了阈值电压的限制,因此所需的电压余量降低了,但是晶体管非线性的影响仍然存在。为了使阻抗变化可接受,它们仅对输出电压摆幅提供有限的增加。
引入清洁室的每种材料都是空气传播分子污染(AMC)的潜在来源。材料的化学成分,其表面积,其热行为和温度最终通过特定组件确定了引入洁净室环境中的污染水平。那些在关键过程成分上凝结的污染物可能会导致“ AMC缺陷”,例如晶片,不受控制的硼和磷掺杂,蚀刻速率变化,阈值电压移位,晶片和丙键率偏移和高接触率和高接触电阻的变化。随着微电子设备的线路宽度缩小了“ AMC缺陷”已成为一个主要问题,需要在洁净室的设计中考虑。
始终运行发射器可节省大量电量。在每秒进行三次轮询的系统中,系统仅约 1% 的时间处于活动状态。在睡眠状态下,TRF79xxA 几乎不消耗任何电量,而 MSP430 消耗的电流量可忽略不计(约 0.8 µA)。在持续几毫秒的活动状态下,TRF7970A 会快速打开、初始化,并执行发射器突发。这会打开发射器约 20 µs。在关闭之前,比较器会初始化,并启动计时器来测量时间。计时器一直运行,直到比较器发出中断,指示已超过阈值电压。此时的定时器时间是信号的衰减时间。如前所述,较长的时间表示功率耦合,这意味着卡可能已处于现场。
摘要 - 本文的上下文是低功率应用:RF能量收集。在本文中,我们比较了用两种不同的技术实现的两个迪克森电压直流的性能:FDSOI 28 nm和BICMOS 55 nm。两种技术中二极管的I-V特性的测量表明,与BICMOS相比,FDSOI显示出较小的阈值电压和泄漏电流较小。也通过测量结果确定,用FDSOI实现的直接效力的效率优于使用BICMOS获得的直径的效率。此外,研究了后门极化(BGP)在FDSOI中的影响,并提出了新型的动态BGP。在FDSOI中实现了44%的功率转化效率(PCE),而BICMO中观察到37%的PCE。
到3。 56×10 6,阈值电压从 - 0移动。 74 V至 - 0。 12 V和一个小的子阈值秋千为105 mV/dec。 改进的MOS 2 FET性能归因于在Al 2 O 3 ALD生长过程中引入NH 3的氮掺杂,从而导致介电层的表面粗糙度降低,并修复Al 2 O 3层中的氧空位。 此外,在Al和O前体填充周期后,由原位NH 3进行处理的MOS 2 FET证明了最佳性能。这可能是因为最终的NH 3掺杂膜生长后,恢复了更多的氧空位,以筛选MOS 2通道中更多的电荷散射。 报告的方法提供了一种有希望的方法,可以减少高性能MOS 2设备中载体传输中的电荷散射。到3。56×10 6,阈值电压从 - 0移动。74 V至 - 0。12 V和一个小的子阈值秋千为105 mV/dec。改进的MOS 2 FET性能归因于在Al 2 O 3 ALD生长过程中引入NH 3的氮掺杂,从而导致介电层的表面粗糙度降低,并修复Al 2 O 3层中的氧空位。此外,在Al和O前体填充周期后,由原位NH 3进行处理的MOS 2 FET证明了最佳性能。这可能是因为最终的NH 3掺杂膜生长后,恢复了更多的氧空位,以筛选MOS 2通道中更多的电荷散射。报告的方法提供了一种有希望的方法,可以减少高性能MOS 2设备中载体传输中的电荷散射。
本文研究了低能质子诱导多特征尺寸NAND闪存单粒子效应灵敏度。在0.41 MeV质子作用下,25nm和16nm闪存器件出现了单粒子效应截面峰值。SRIM模拟揭示了这种现象产生的主要原因,低能质子直接电离引起的单粒子翻转比高能质子核反应引起的单粒子翻转要高几个数量级。此外,还研究了累积剂量对闪存器件单粒子效应灵敏度的影响。随着累积剂量的增加,单粒子翻转截面显著增加。这种现象的出现是由于质子和累积剂量的结合引起的阈值电压偏移造成的。
摘要 — 本文介绍了一项关于 28 nm FD-SOI MOSFET 参数提取和分析的分析性实验研究,温度范围从室温到 25 K,栅极长度从微米到纳米。结果表明,FD-SOI 器件随温度变化的行为可以通过深低温条件下已建立的物理理论可靠地描述:玻尔兹曼统计和声子散射机制是决定器件电行为的两个主要因素。此外,我们还展示了 Y 函数作为一种参数提取方法的优势,适用于不同的通道长度和宽的温度范围。我们展示了阈值电压、亚阈值摆幅、低场迁移率和源漏串联电阻对温度的依赖性,以及栅极长度减小如何影响这些特性。