癌症是一种复杂而多方面的疾病,影响了全球数百万的人。癌症治疗和预防最有希望的进步之一是mRNA癌症疫苗的发展[1]。这些疫苗利用免疫系统靶向和消除癌细胞的能力,提供革命性的癌症治疗方法[2]。mRNA癌症疫苗利用MES SENGER RNA(mRNA)分子的独特特性来指示人体的免疫系统识别和攻击癌细胞。与传统的疫苗不同,该疫苗将病毒或细菌的弱或灭活形式的形式引入体内,mRNA疫苗为特定的癌症相关蛋白或抗原提供了遗传代码[3]。当将mRNA引入体内时,细胞会采用它,然后使用遗传指令产生靶抗原[4]。该抗原在细胞表面呈现,其中免疫系统将其识别为异物。因此,免疫系统对抗原进行反应,以识别和消除将来显示出相同抗原的任何癌细胞。这种目标方法增强了人体对抗癌症的能力,并降低了与常规癌症治疗相关的副作用的风险[5,6]。
摘要 ................................................................................................................................ 3 目录 图表列表 ...................................................................................................................... 4 简介 ................................................................................................................................ 5 方法 ................................................................................................................................ 9
“氧化应激”一词最早由 Helmut Sies 1 提出,指的是氧化剂和抗氧化防御之间的不平衡,这种不平衡可能导致生物系统受损。从那时起,氧化还原生物学领域已经从病理学中的氧化应激概念发展到生理学中的氧化还原信号传导 2 – 4 。氧化应激已被证明与多种疾病有关,包括动脉粥样硬化、慢性阻塞性肺病 (COPD)、阿尔茨海默病和癌症,这揭示了氧化剂导致细胞损伤的多种机制 5 。然而,氧化应激参与疾病病理的程度非常多变,因此增加抗氧化防御的有效性在某些疾病中可能有限。氧化应激涉及由氧和氮衍生的所谓活性物质的化学反应 (框 1 )。了解这些物质中的哪些会对大分子造成损害有助于为改善抗氧化防御的治疗方法提供理论依据。然而,到目前为止,小分子在治疗上的应用令人失望,主要是因为人们对抗氧化剂的作用原理过于乐观和不正确的假设 6 。例如,清除羟基自由基 (•OH) 是不切实际的,但通过减少过氧化氢 (H 2 O 2 ) 的产生来阻止其形成可以有效预防损伤。氧化应激领域的主要误解之一是小分子可以清除超氧化物 (O 2 • − ) 或 H 2 O 2 ,而小分子在细胞内也是无效的。这是因为抗氧化酶会与数千种
10。造成的条件是:(a)战争行为(宣布或未宣布); (b)当政府资金可用于治疗核能引起的疾病或伤害时,核能无意中释放; (c)参加任何国家军事服役的被保险人; (d)参加起义,叛乱或骚乱的被保险人; (e)服务是被保险人委托或试图犯下重罪(无论是不收取)或被保险人从事非法职业的直接结果的直接结果; (f)除非由医生给予或开处方,否则在疾病发生或在非法麻醉品或非处方受控物质的情况下,由适用的州法律定义的被保险人被陶醉。
机器学习能破解鼻子里的密码吗?在过去十年中,研究试图利用大数据解决化学结构和感官质量之间的关系。这些研究推进了嗅觉刺激的计算模型,利用人工智能挖掘化学和心理物理学之间的明确相关性。计算视角有望通过更多数据和更好的数据处理工具解决嗅觉之谜。然而,他们都没有成功,而为什么会这样很重要。本文认为,我们应该对在感知理论中将感觉系统的生物学黑箱化的趋势深表怀疑。相反,我们需要将刺激模型和心理物理数据都建立在嗅觉系统的真实因果机制解释之上。核心问题是:生物学知识是否能比当前机器学习模型中使用的刺激更好地理解气味编码中的刺激?事实确实如此。关于受体行为的最新研究表明,嗅觉系统的运作原理并未被当前刺激反应模型所捕捉。这可能需要从根本上修订嗅觉的计算方法,包括其心理效应。为了分析嗅觉的不同研究项目,我们借鉴了劳埃德的“研究问题逻辑”,这是一个哲学框架,可帮助科学家阐明所讨论的建模方法的推理、概念承诺和问题。
摘要:成簇的规律间隔短回文重复序列 (CRISPR) 相关内切酶 9 (CRISPR/Cas9) 基因编辑系统在许多细菌和古菌中发挥免疫抑制作用,具有高效、多样性和模块化等多种优势。它现在被广泛用于提高作物的质量和数量以满足全球粮食需求。尽管这些前景很诱人,但仍需要更深入的了解来提高其效率和安全性。因此,对这一特殊系统的概述非常重要。在这篇综述中,简要介绍了目前对不同类型的 CRISPR/Cas 系统的了解以及它们的机制、在作物育种中的应用和局限性,为未来的利用提供基本理解和指导。
自从格列卫(伊马替尼)在临床上用于治疗癌症(20 世纪 90 年代)以来,靶向治疗的概念就越来越受欢迎。这种方法基于对特定疾病发病机制背后的生物学机制的基本了解,以及靶向灭活该机制以进行治疗的可能性。主要思想是这种靶向作用可以消除致病因素,同时最大程度地减少对完整细胞的损害。由于药物化学和相关学科的进步,临床医生拥有数十种靶向药物,目前有数百种化合物正在临床试验中。这些药物中的大多数靶向具有酶特性的蛋白质,例如蛋白激酶、表观遗传标记等。这些靶标的结构得到了详细研究,从而可以合成大型靶向化合物库并识别具有高抑制活性和选择性的先导化合物。非酶蛋白的失活更具挑战性。其中包括信号级联的重要元素、众多结构蛋白、
© 作者 2024。开放存取 本文根据知识共享署名 4.0 国际许可证进行授权,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可证的链接,并指明是否做了更改。本文中的图像或其他第三方资料包含在文章的知识共享许可证中,除非资料的致谢中另有说明。如果资料未包含在文章的知识共享许可证中,并且您的预期用途不被法定规定允许或超出了允许的用途,您将需要直接从版权所有者处获得许可。要查看此许可证的副本,请访问 https://creativecommons.org/licenses/by/4.0/。
利用细菌代谢物的免疫调节潜力为治疗各种免疫相关疾病的令人兴奋的可能性。但是,将这种潜力变成现实带来了重大挑战。本综述调查了这些挑战,重点是发现,生产,表征,稳定,配方,安全性和个人可变性限制。强调了许多代谢产物的有限生物利用度以及潜在的改进以及脱靶效应的潜力和精确靶向的重要性。此外,研究了肠道细菌代谢物与微生物组之间的复杂相互作用,强调了个性化方法的重要性。我们通过讨论宏基因组学,代谢组学,合成生物学和靶向递送系统的有希望的进步来结束,这对克服这些局限性并为细菌代谢物作为有效免疫调节剂的临床翻译铺平了希望。