课程概述:概率,随机变量和随机信号的概念。随机过程的一阶和二阶统计。事件点的泊松分布。随机变量及其特征。CDF&PDF及其属性。存在定理。高斯RV,Poisson RV,Bernoulli分布的RV和均匀分布的RV,线性系统对随机信号输入的响应;功率密度光谱和基本关系。线性馈回控制的分析设计。parseval的定理及其概括。M.S.E. 对不同情况的估计。 维纳蹄积分方程和解决方案方法。 高斯 - 马尔可夫序列和过程模型;连续和离散线性系统的最佳预测,过滤和平滑。M.S.E.对不同情况的估计。维纳蹄积分方程和解决方案方法。高斯 - 马尔可夫序列和过程模型;连续和离散线性系统的最佳预测,过滤和平滑。
在本课程中,我们将采用统计观点,这将需要熟悉概率(例如随机变量,期望,独立性,联合分布,条件分布,贝叶斯规则和多元正态分布)的基本概念(例如,随机变量,期望,独立性,联合分布,有条件分布和多元正态分布)。我们还将使用线性代数的语言来描述算法并进行任何分析,因此您应该熟悉诸如规范,内部产品,正交性,线性独立性,特征值/矢量,特征值分解等概念等概念。以及多变量演算的基础知识,例如部分衍生物,梯度和链条规则。如果您作为本科生(或最近)就这些主题开设了课程,那么随着学期的进行,您应该能够填补理解中的任何空白。最后,许多家庭作业和课程项目都需要使用Python。没有必要对Python的经验,但是我假设对科学编程的基础知识(例如,具有C,MATLAB或其他一些编程语言)。
摘要。随着无线技术的快速发展,无人驾驶汽车(UAV)在自由空间光学(FSO)通信中的结合可以从覆盖范围,安全性和容量中获得一些好处。详细研究了用于分析此类系统的参数。由于湍流引起的褪色以及几何和未对准效应而导致接收到的光束中的辐照波动,以最大程度地减少位错误率。UAV雇用的FSO链接中涉及的随机变量大于FSO系统中存在的随机变量。因此,与地面陆地FSO链接相比,无人机的FSO系统的有效设计相对较具挑战。可以定义许多性能指标,并且需要进行分析,以优化与基于无人机的FSO系统相关的参数,并设计具有良好服务质量的链接。还探讨了一些最新方法,以进一步提高基于无人机的FSO网络的可靠性和覆盖范围。
co1应用与统计推断有关的概念,例如随机抽样和采样分布。CO2根据样本估算分布的参数,并进行假设检验,回归分析,相关性和方差分析。 CO3应用数学和统计数据的全面知识来解决静态概率,动态概率的问题。 CO4使用随机过程的知识,提出现实生活中的问题并确定长期概率。 co5基于毒物过程,估计排队系统统计推断的各种性能度量:随机抽样,抽样分布,参数估计和假设检验,回归,相关性和方差的相关性和分析 - 示例 - 示例。 静态概率,动态概率。 状态分类,马尔可夫过程的链。 马尔可夫系统的稳定性,限制行为,随机步行。 泊松过程:假设和衍生,相关分布,出生和死亡过程。 排队系统,一般概念,M/M/1模型和M/M/S,稳态行为,瞬态行为。 参考:1。 Hogg&Craig(1975),“数学统计概论”,第4THEDN。,MACMILLAN,2。 J.Medhi,“随机过程”。 3。 A. Papoulis和S.U. Pillai,概率,随机变量和随机过程,CO2根据样本估算分布的参数,并进行假设检验,回归分析,相关性和方差分析。CO3应用数学和统计数据的全面知识来解决静态概率,动态概率的问题。CO4使用随机过程的知识,提出现实生活中的问题并确定长期概率。co5基于毒物过程,估计排队系统统计推断的各种性能度量:随机抽样,抽样分布,参数估计和假设检验,回归,相关性和方差的相关性和分析 - 示例 - 示例。静态概率,动态概率。状态分类,马尔可夫过程的链。马尔可夫系统的稳定性,限制行为,随机步行。泊松过程:假设和衍生,相关分布,出生和死亡过程。排队系统,一般概念,M/M/1模型和M/M/S,稳态行为,瞬态行为。参考:1。Hogg&Craig(1975),“数学统计概论”,第4THEDN。,MACMILLAN,2。 J.Medhi,“随机过程”。 3。 A. Papoulis和S.U. Pillai,概率,随机变量和随机过程,Hogg&Craig(1975),“数学统计概论”,第4THEDN。,MACMILLAN,2。J.Medhi,“随机过程”。3。A. Papoulis和S.U. Pillai,概率,随机变量和随机过程,A. Papoulis和S.U.Pillai,概率,随机变量和随机过程,
助教:TBD办公室:TBD办公时间:TBD联系信息:TBD IT帮助:DEN Services目录描述概率;随机变量和向量;关节,边缘和条件分布;贝叶斯定理;随机过程简介;统计推断;回归和生成模型。课程描述课程是适用于所有工程学科的概率和统计信息的简介。班级的重点是学习概率和统计数据的基本概念,这些概念在解释工程/科学数据和概率机器学习技术中的应用中找到了应用。该课程的第一部分将重点关注概率空间,随机变量和向量,累积和概率密度函数,关节,边际和条件概率,贝叶斯定理,中央限制定理以及随机过程的简介。在课程的第二部分中,这些想法将应用于包括参数估计,假设测试,回归和机器学习生成模型的统计任务。学习目标的学生成功完成课程
BIM 105 — 生物医学工程师的概率与数据科学(4 个单元)此版本已结束;请参阅下面的更新课程。课程描述:概率、随机变量、随机过程、数学建模和数据分析的概念,以及在生物医学工程中的应用。包括组合学、离散、连续和联合分布的随机变量、概率分布和模型、马尔可夫链和泊松过程。使用 MATLAB 的计算机实验室涵盖数学和计算建模技术、动手数据分析和计算机模拟。先决条件:MAT 022A C- 或更高或 MAT 027A C- 或更高或 BIS 027A C- 或更高或 ENG 006(可以同时进行);或经讲师同意。学习活动:讲座 3 小时,实验室 2 小时。学分限制:对于已修读 MAT 107 或 BIS 107 的学生没有学分;已完成 MAT 135A 或 STA 131A 的学生仅可获得 2 个学分。成绩模式:字母。通识教育:科学与工程 (SE)。
1 描述统计:a) 集中趋势测量 - 分组和非分组数据;平均值、样本平均值 - 加权平均值;中位数、四分位数、b) 十分位数和百分位数、箱线图、众数变异测量 - 离差、范围、标准差、总体与样本方差和标准差、偏度、峰度。2 概率和抽样分布简介:a) 分配概率的方法、概率空间、概率模型的条件、事件、简单和复合、概率定律、概率密度函数、累积分布函数、平均值和方差的预期值。边际、联合、联合和条件概率,贝叶斯定理 b) 随机变量、离散和连续分布、期望、分布矩、二项分布、泊松分布、均匀分布和正态分布、二项分布的正态近似、多个随机变量的分布、联合分布矩、独立性、协方差、相关系数、中心极限定理。3 假设检验:a) 总体参数的大样本估计和假设检验:估计总体均值和差异的基础知识;估计比例和差异;总体均值、差异的大样本检验;比例、差异的大样本检验。b) 总体方差的估计:方差的抽样分布,
目的:随机过程是电气工程研究生研究的核心课程,对于那些希望专门从事沟通,控制,信号处理和网络的人来说,必不可少的课程。主题对于其他领域(例如机器学习,财务工程,操作研究和算法设计)也非常有用。本课程的主要目的是向学生介绍对概率,随机变量和随机信号(或随机过程)的严格且相当全面的看法。课程的第一部分将从概率和随机变量的全面视图开始。将研究条件概率和期望的概念。一旦看到基础知识,我们将研究随机现象的研究中所需的重要结果,因为它们在信号和噪声的建模中表现出来,即独立性,正常性等。基于这些,我们将研究关键结果,例如中心限制定理,大量定律和收敛概念。本课程的后三分之一将专门研究重要的信号模型,尤其是所谓的广泛固定过程的理论。该课程将以对马尔可夫连锁店的介绍为结束,这些链条是建模和算法开发的通用过程。总体目的是为学生提供与随机过程相关的潜在结构,特别是作为信号和系统模型,并学习在涉及随机现象的应用中工作的主要工具。
牛津大学的研究人员与汉堡、匹兹堡和康奈尔大学的同事合作,重新定义了这个问题,完全避免了直接解决和模拟这些湍流波动的需要。他们没有直接模拟这些麻烦的波动,而是将它们建模为根据概率分布函数分布的随机变量。模拟这样的概率分布使他们能够从流动中提取所有有意义的量(例如升力和阻力),而不必担心湍流波动的混乱。
RIVACY 放大是从大量仅部分保密的共享信息中提取高度机密的 P 共享信息(可能用作加密密钥)的艺术。让 Alice 和 Bob 获得一个随机变量 W,例如随机 a 位字符串,而窃听者 Eve 学习一个相关随机变量 V,最多提供有关 W 的 t < n 位信息,即 H(WIV) 2 nt。Alice 和 Bob 通常不知道分布 PVW 的细节,但它满足此约束以及可能满足一些进一步的约束。他们可能知道也可能不知道 Pw。 Alice 和 Bob 希望公开选择一个压缩函数 g : (0,l)” + (0, l}',使得 Eve 关于 W 的部分信息和关于 g 的完整信息可以让她获得关于 K = g(W) 的任意少量信息,但概率可以忽略不计(对于 g 的可能选择)。考虑到 Eve 的所有信息,得到的 K 实际上是均匀分布的;因此可以安全地用作加密密钥。Alice 和 Bob 可以提取的秘密的大小 T 取决于 Eve 可用的信息类型和数量。假设 W 是一个随机的 n 位字符串,需要考虑的各种可能情况是 Eve 可以获得