使用 3D ToF 进行按需控制通风的人数统计参考设计是一个子系统解决方案,它使用 TI 的 3D ToF 图像传感器结合跟踪和检测算法,以高分辨率和高精度计算给定区域中的人员数量。传感器技术采用标准 CMO 开发,使系统能够以低成本实现非常高的集成度。由于 ToF 图像传感器以三维方式处理视觉数据,因此该传感器可以检测人体的精确形状以及跟踪运动并以前所未有的精度定位人员,包括细微的运动变化。因此,与传统监控摄像头和视频分析相比,ToF 摄像头可能能够更有效地执行实时人数统计和人员跟踪功能。
随着超大规模集成电路技术的飞跃发展,综合航空电子设备,集成度越来越高。数据总线对于设备快速、高效、可靠的数据传输具有不可替代的作用。ARINC-429总线是由美国航空电子设备制造商、定期航空公司、飞机制造商以及其他国家航空公司联合成立的航空无线电公司,所制定的一系列统一的工业标准和规范[1-2]。PC/104嵌入式系统具有功耗低、体积小、工作温度范围宽、可靠性高等突出优点[3-5]。早期实现ARINC-429的数据传输方式一般采用单片机控制系统[6-8],但存在通信速率低、时序控制不够灵活的不足,不适合ARINC-429的高速通信。
演讲将介绍当今正在讨论的技术,更准确地说,纳米技术和表面状态理解如何允许开发具有高分辨率和灵敏度的新型传感器。演讲还将概述设想用于处理同时连接的传感器群的架构。演讲将评估一些重要问题,如小型化、高集成度、功耗和自主性以及网络安全。在第二部分中,将展示先进微系统在几乎所有工业领域中的目标应用。最后,在第三部分中,将展示除了硬件架构之外,数据处理、存储和可视化将在新兴的物联网中发挥重要作用,从而定义一种称为“信息物理系统”的新系统类别。
一直遵循摩尔定律,根据该定律,通过光刻生产的集成电路的集成度会翻倍。到目前为止,这些微芯片主要采用波长为 193 nm 的光学光刻技术制造。为了实现 10 纳米以下的结构尺寸,必须使用极紫外光 (EUV):这可以实现更好的光学分辨率。然而,EUV 光刻面临着许多挑战。EUV 光被强烈吸收,因此必须在真空中进行曝光,并且在照明和成像系统中,必须将带透镜的折射光学器件替换为带镜子的反射光学器件。对要开发的光学器件的要求很高:它们需要高水平的研究和开发,以显著改善表面质量、材料成分、尺寸和形状。
根据2021年国际器件与系统路线图(IRDS),环栅晶体管(GAA)将从3nm技术节点开始取代FinFET,并应用于1nm技术节点。下一步,尺寸缩小的目标不仅是降低漏电,更重要的是降低功率,而包括三维异质集成在内的三维垂直架构将成为降低功耗的主流技术。要延续摩尔定律,不仅需要通过器件尺寸缩小来提高电路集成度,还需要降低功率和提高开关速度。堆叠式NSFET具有更好的静电完整性、短沟道免疫力,因此具有更好的功率缩放性能,是未来亚3nm技术节点的有希望的候选者[1−3]。
消费者需求、物联网 (IoT) 以及近期旨在应对气候变化的立法和政策活动增加了对可再生能源、电动汽车 (EV) 和电子设备的需求。电子垃圾已经成为固体垃圾流中增长最快的部分,预计未来几十年报废太阳能电池板和电动汽车电池的数量将急剧增加。此外,由于应用了越来越复杂的材料成分和设计参数,这些高科技产品的设计越来越像比前几代产品更快、更轻、更小、更坚固、功能更多、集成度更高、更耐用。传统上,材料遵循一条基本上线性的路径 — — 提取、生产、分配、消费/使用、处置 — — 但对环境和社会影响以及供应链安全的关注促使人们向更加 CE 的转变。
I. 引言 如今,体声波 (BAW) 器件已用于要求高集成度和高性能的现代通信系统。基于氮化铝 (AlN) 或氧化锌 (ZnO) 等的 BAW 器件已得到广泛研究,该技术现已成为集成高达数 GHz 的本振和滤波器等窄带元件 (5%) 的有效替代方案 [1–4]。为了扩展 BAW 技术的应用,其他压电材料也受到研究,并被视为实现宽带元件的有希望的解决方案。本文提出了一种可应用于窄带和宽带带通滤波器设计的程序。该设计程序基于 BAW 谐振器的集总元件模型的优化,该模型与技术参数直接相关。本文讨论了所提方法的背景,即有效性,并选择了两个示例进行说明。第一个例子是为 UMTS 通信设计的窄带(3%)带通滤波器 [5]。第二个
I. 引言基于有机薄膜晶体管(OTFT)的集成电路最近显示出向更高集成度和更好性能的快速发展。与无机晶体管相比,OTFT 因其成本低、温度低、可快速制造,尤其是与机械柔性和轻质聚合物基板的兼容性而备受期待 [1]。因此,OTFT 有望实现大面积、可弯曲和可卷曲的应用,例如电子纸和平板显示器 [2]。此外,最近的 OTFT 的低压操作能力为集成结合大面积有机电子器件和高性能薄硅芯片的混合解决方案提供了可能性 [3],也使其非常适合电池供电或频率耦合的便携式设备,例如射频识别(RFID)标签 [4]。最后,由于有机半导体与多种溶剂蒸汽具有化学相互作用,OTFT 还可用于化学和生物传感器 [5]。在所有这些
Microsemi 已投资建设智能电源解决方案 (IPS) 的新航空卓越中心 (CoE)。该研发实验室和系统集成设施将负责设计、开发和制造用于多电飞机 (MEA) 电源转换应用的全新 IPS 产品线。该设施的新研发实验室拥有丰富的建模、仿真、分析和算法开发能力,可加速产品创新。最先进的测量设备可进行广泛的产品测试,而专用的可靠性实验室则有助于产品认证和长期特定应用寿命测试。随着航空业继续要求电力电子领域具有更高的可靠性和集成度以实现 MEA 目标,Microsemi 的航空卓越中心将在支持这一目标方面发挥关键作用。