基因组学工具近年来重新定义了全球昆虫学研究的轮廓。侵入性害虫的新出现问题,各种田间作物中吮吸害虫复合物的复兴,作物害虫中的异种生物耐药性对杀虫剂和生物毒素的耐药性以及植物病原体的载体传播可以通过昆虫分子生物学更好地解决。Insect molecular biological studies would offer strategic research support to resolve conflicts in the taxonomic identity of crop pests, for tackling xenobiotic resistance in transgenic crop systems, design molecular marker probes for detecting insecticide resistance in field storage pests, to assess the sensitivity of natural enemies to insecticides and to develop novel pest management strategies by deploying RNA interference technology.作为昆虫是最大的动物,充满了基因组数据库,结合生物信息学分析的分子方法为基因挖掘的数据库提供了范围,用于鉴定新的靶位点,以识别下一代杀虫剂和理性农药。许多在线门户网站和基因组数据库等昆虫等昆虫,昆虫基础等,为有兴趣分析昆虫基因组感兴趣的研究人员提供了一个全面的平台。阐明输入基因组信息的大数据需要复杂的生物信息学分析。因此,昆虫学学生的能力建设基本上是需要使他们对昆虫基因组学的最新信息。
基于 CRISPR/Cas9 的碱基编辑工具可实现精确的基因组安装,并为基因治疗带来巨大希望,而 Cas9 核酸酶的大尺寸、其对特定原间隔区相邻基序 (PAM) 序列的可靠性以及靶位偏好限制了碱基编辑工具的广泛应用。在这里,我们通过将胞嘧啶脱氨酶与来自 Streptococcus_gordonii_str._Challis_substr._CH1 (ancSgo-BE4) 和 Streptococcus_thermophilus_LMG_18311 (ancSth1a-BE4) 的两个紧凑的密码子优化的 Cas9 直系同源物融合来生成两个胞嘧啶碱基编辑器 (CBE),它们比化脓性链球菌 (SpCas9) 小得多,分别识别 NNAAAG 和 NHGYRAA PAM 序列。这两种 CBE 在胞嘧啶碱基编辑中都表现出高活性、高保真度、不同的编辑窗口和低副产物,并且在哺乳动物细胞中 DNA 和 RNA 脱靶活性极小。此外,在我们测试的靶位点上,这两种编辑器都表现出与两种基于 SpCas9 工程变体(SpCas9-NG 和 SpRY)的 CBE 相当或更高的编辑效率,它们与 ancSgo-BE4 或 ancSth1a-BE4 的 PAM 序列完美匹配。此外,我们通过 ancSgo-BE4 和 ancSth1a-BE4 成功生成了两种在 Ar 基因处带有临床相关突变的小鼠模型,它们在创始小鼠中表现出雄激素不敏感综合征和/或发育致死性。因此,这两种新型 CBE 拓宽了碱基编辑工具包,分别扩大了靶向范围和窗口,以实现有效的基因修饰和应用。
一种替代全长 CFTR cDNA 的“通用策略”可治疗 99% 以上的囊性纤维化 (pwCF) 患者,无论他们的具体突变如何。基于 Cas9 的基因编辑被用于在气道基底干细胞的 CFTR 基因座处插入 CFTR cDNA 和截短的 CD19 (tCD19) 富集标签。该策略将 CFTR 功能恢复到非 CF 水平。在这里,我们通过评估 CFTR cDNA 插入后的基因组和调控变化来研究这种方法的安全性。首先通过使用 CAST-seq 量化基因重排来评估安全性。在验证编辑和富集的气道细胞中恢复的 CFTR 功能后,使用 ATAC-seq 表征 CFTR 基因座开放染色质谱。使用 scRNA-seq 评估编辑细胞中的再生潜力和差异基因表达。 CAST-seq 发现 0.01% 的等位基因发生易位,主要发生在非致癌脱靶位点,1% 的等位基因发生大量插入缺失。分化气道上皮细胞的开放染色质谱除 CFTR cDNA 和 tCD19 盒对应的区域外,没有出现明显变化,表明基因调控没有可检测到的变化。编辑后的干细胞产生的气道细胞类型与对照相同,基因表达的改变最小。总体而言,通用策略显示出轻微的不良基因组变化。
摘要 菊花是全球销量最高的四种切花之一。基因编辑是研究基因功能的重要工具,但目前尚无高效、精准的菊花基因组编辑工具。本研究建立了CRISPR/Cas9介导的基因编辑系统,以探索基因功能并提高菊花育种水平。我们利用Golden Gate Assembly系统构建了CRISPR/Cas9载体,用于双靶向Phytoene Dehydro(PDS)基因。为了测试sgRNA设计的准确性,我们最初使用了植物中的瞬时CRISPR/Cas9编辑(TCEP)方法。经瞬时转染的9株植物中靶基因表达量为正常水平的19.1%–52%,证实了靶基因敲除的可行性。我们进行了稳定转化;PCR 和靶位测序表明,获得的八株白化植物中有四株在靶位点进行了稳定编辑。我们通过靶向另一个基因 CmTGA1 进一步评估了该系统的编辑效率,之所以选择该基因,是因为它在菊花白锈病 (CWR) 疾病进展中具有潜在重要性。我们的数据表明,结合瞬时和稳定转化可提高基因组定点编辑的效率和成功率。我们在此建立的有效、可遗传的 CRISPR/Cas9 介导的基因组编辑系统为 C 的功能基因研究和遗传改良奠定了基础。菊花。
基因组编辑技术为多年生黑麦草(一种全球重要的牧草和草坪草种)的遗传改良提供了强有力的工具。关于多年生黑麦草基因编辑的唯一出版物使用基因枪进行植物转化,并使用基于双启动子的 CRISPR/Cas9 系统进行编辑。然而,它们的编辑效率很低(5.9% 或只产生了一株基因编辑植物)。为了测试玉米泛素 1 (ZmUbi1) 启动子在多年生黑麦草基因编辑中的适用性,我们制作了 ZmUbi1 启动子:RUBY 转基因植物。我们观察到 ZmUbi1 启动子在芽再生之前的愈伤组织中活跃,这表明该启动子适用于多年生黑麦草中的 Cas9 和 sgRNA 表达,以高效生产双等位基因突变植物。然后,我们使用 ZmUbi1 启动子来控制多年生黑麦草中的 Cas9 和 sgRNA 表达。Cas9 和 sgRNA 序列之间的核酶切割靶位点允许在转录后产生功能性 Cas9 mRNA 和 sgRNA。使用农杆菌进行遗传转化,我们观察到在多年生黑麦草中编辑 PHYTOENE DESATURASE 基因的效率为 29%。DNA 测序分析表明,大多数 pds 植物含有双等位基因突变。这些结果表明,由 ZmUbi1 启动子控制的单个 Cas9 和 sgRNA 转录单元的表达为产生多年生黑麦草的双等位基因突变体提供了一种高效的系统,并且也适用于其他相关草种。
摘要:使用新型 CRISPR/Cas12a 系统具有优势,因为它与常用的 CRISPR/Cas9 系统相比具有不同的特点,从而扩展了基因组编辑 (GE) 应用的可能性。在这项工作中,CRISPR/Cas12a 系统首次应用于苹果,以研究其在 GE 应用中的普遍可用性。通过体外切割试验预先筛选出针对内源报告基因 MdPDS 不同外显子的有效引导 RNA,该基因的破坏会导致白化表型。将一个构建体转移到苹果中,该构建体编码 CRISPR/Cas12a 系统,该系统同时靶向 MdPDS 中的两个基因座。使用荧光 PCR 毛细管电泳和扩增子深度测序,所有已鉴定的再生白化芽的 GE 事件都被描述为缺失。未观察到两个相邻靶位点之间的大量缺失。此外,还经常观察到表现出多个 GE 事件的再生体和芽的嵌合组成。通过比较两种分析方法,结果表明荧光 PCR 毛细管凝胶电泳是一种灵敏的高通量基因分型方法,可以同时准确预测多个位点的插入/缺失突变的大小和比例。特别是对于表现出高嵌合频率的物种,可以推荐将其作为有效选择同型组蛋白 GE 系的经济有效的方法。
摘要:精确的基因编辑是 - 或很快就会用于多种疾病的临床用途,并且正在开发更多应用。由单个诱导RNA(SGRNA)导演的可编程核酸酶CAS9可以在基因组DNA的靶位点中引入双链断裂(DSB),这构成了使用这种新技术的基因编辑的初始步骤。在哺乳动物中,两种途径占主导地位的DSB修复 - 非同源末端连接(NHEJ)和同源指导的修复(HDR) - 基因编辑的结果主要取决于这两个修复途径之间的选择。尽管HDR以其高度有吸引力,但在生物学环境中,修复途径的选择是有偏见的。哺乳动物细胞优先通过多种机制利用NHEJ:NHEJ在整个细胞周期中都活跃,而HDR仅限于S / G2阶段; NHEJ比HDR快。 NHEJ抑制了HDR过程。这表明可以通过操纵细胞修复途径的选择来实现对编程DNA病变结果的明确控制。在这篇综述中,我们总结了DSB修复途径,基于DNA切除的选择选择的机制,并在研究策略中取得了进展,该策略基于操纵修复途径的选择以增加哺乳动物细胞的HDR频率,从而有利于Cas9介导的HDR。还讨论了提高HDR效率的其余问题。本评论应促进CRISPR / CAS9技术的开发,以实现更精确的基因编辑。
摘要 基因筛选是基因组功能注释的有力工具。在多细胞生物中,允许在空间和时间上控制基因消除的方法极大地促进了基因功能的探究。在这里,我们描述了一个大规模转基因短向导 (sg) RNA 文库,用于以组成性或条件性方式有效地基于 CRISPR 破坏特定靶基因。该文库目前由 2600 多个质粒和 1700 个果蝇系组成,重点是靶向激酶、磷酸酶和转录因子,每个都在 Gal4/UAS 系统的控制下表达两个 sgRNA。我们表明,条件性 CRISPR 诱变在许多靶基因中都很有效,并且可以有效地用于各种体细胞组织以及生殖系。为了防止通常与过量 Cas9 蛋白相关的假象,我们开发了一系列新型 UAS-Cas9 转基因,这些转基因允许对 Cas9 表达进行微调,以实现高基因编辑活性,而不会产生可检测的毒性。功能测定以及基因组 sgRNA 靶位点的直接测序表明,绝大多数转基因 sgRNA 系可介导有效的基因破坏。此外,我们在所有后生动物中进行了迄今为止最大的完全转基因 CRISPR 筛选,这进一步证明了我们文库的高效率和准确性,并揭示了许多迄今为止尚未鉴定的发育必需基因。
摘要 CRISPR-Cas 系统已被广泛用作基因组编辑工具,其中两种常用的 Cas 核酸酶是 Spy Cas9 和 Lb Cas12a。虽然这两种核酸酶都使用 RNA 向导来寻找和切割靶 DNA 位点,但这两种酶在原间隔区相邻基序 (PAM) 要求、向导结构和切割机制方面有所不同。在过去的几年里,合理工程设计导致了 PAM 放宽变体 Sp RYCas9 和 imp Lb Cas12a 的诞生,以拓宽可靶向的 DNA 空间。通过使用它们的催化无活性变体 (dCas9/dCas12a),我们量化了蛋白质特异性特征如何影响靶标搜索过程。为了进行量化,我们将这些核酸酶与光激活荧光蛋白 PAmCherry2.1 融合,并在大肠杆菌细胞中进行单粒子追踪。通过跟踪分析,我们推导出了每种具有非靶向 RNA 向导的核酸酶的动力学参数,这强烈表明 Lb dCas12a 变体对 DNA 的询问比 Spy dCas9 更快。在存在靶向 RNA 向导的情况下,模拟和细胞成像均证实 Lb dCas12a 变体在找到特定靶位点方面更快、更高效。我们的工作展示了使用强大的框架工作放宽 Spy dCas9 和 Lb dCas12a 中的 PAM 要求的权衡,这可以应用于其他核酸酶以量化它们的 DNA 靶标搜索。
saccharomyces cerevisiae pif1是一种多功能DNA解旋酶,在维持核和线粒体基因组的维持中起多种作用。PIF1的两个同工型通过使用替代的翻译起始站点从单个开放的阅读框架中产生。PIF1的线粒体靶向信号(MT)位于两个起始位点之间,但是尚未确定核定位信号(NLS)。在这里,我们使用序列和功能分析来识别NLS元素。在859氨基酸PIF1的羧基末端结构域中缺乏四个碱性氨基酸(781 kKRK 784)的PIF1(PIF1-NLSΔ)的突变等位基因在野生型水平上表达并保留野生型野生型线粒体界功能。然而,PIF1-NLSδ细胞在四个测试中的核功能中有缺陷:端粒长度维持,Okazaki碎片处理,突破性诱导的复制(BIR)以及与核靶位点结合。将NLS融合了NLS,从Simian病毒40(SV40)T-抗原融合到PIF1-NLSδ蛋白质,可减少PIF1-NLSδ细胞的核缺损。因此,绝大多数核PIF1功能需要PIF1羧基附近的四个碱性氨基酸。我们的研究还揭示了先前描述的功能PIF1-M2等位基因丧失与这项工作中产生的其他三个PIF1突变等位基因之间的表型差异,这对于研究核PIF1功能将很有用。