摘要:乳酸菌属乳酸菌在食品生产保存和益生菌中起着至关重要的功能。通过基因编辑开发具有出色性能的新乳杆菌菌株尤其重要。目前,其功能基因的识别和优秀功能基因的采矿主要依赖于传统的基因同源重组技术。基于CRISPR/CAS9的基因组编辑是近年来的一项快速发展的技术。它已被广泛应用于哺乳动物细胞,植物,酵母和其他真核生物中,但在原核生物中,尤其是乳酸杆菌。与传统的应变改善方法相比,基于CRISPR/CAS9的基因组编辑可以极大地提高乳酸杆菌靶位点的准确性并实现无可观的基因组修饰。该技术获得的菌株甚至可能比传统的随机突变方法更有效。本综述研究了基于CRISPR/CAS9的基因组编辑的应用和当前问题,以及基于CRISPR/CAS9的基因组编辑的发展趋势。此外,还提供并总结了基于CRISPR/CAS9的基因组编辑的基本机制。
摘要 CRISPR-Cas基因组编辑工具的快速发展极大地改变了研究方式,并为其临床应用带来了巨大的希望。在基因组编辑过程中,CRISPR-Cas酶在靶位点诱导DNA断裂,随后DNA修复途径被激活以产生多样化的编辑结果。除了脱靶切割之外,不良编辑结果包括染色体结构变异和外源DNA整合最近也引起了对临床安全性的担忧。为了消除这些不良编辑副产物,我们需要从DNA修复的角度探索形成多样化编辑结果的潜在机制。在这里,我们描述了修复Cas酶诱导的DNA双链断裂所涉及的DNA修复途径,并讨论了不良编辑副产物的来源和对基因组稳定性的影响。此外,我们提出了抑制DNA修复途径以增强基因编辑的潜在风险。最近DNA修复和CRISPR-Cas编辑的结合研究为进一步优化基因组编辑以增强编辑安全性提供了框架。
CRISPR-Cas 系统可通过非同源末端连接 (NHEJ) 基因破坏突变等位基因来治疗常染色体显性遗传病。然而,目前的 CRISPR-Cas 系统无法将许多单核苷酸突变与野生型等位基因区分开来。在这里,我们对六种 Cas12j 核酸酶进行了功能性筛选,并确定 Cas12j-8 是一种具有超紧凑尺寸的理想基因组编辑器。Cas12j-8 表现出与 AsCas12a 和 Un1Cas12f1 相当的活性。Cas12j-8 是一种高度特异性的核酸酶,对原间隔区相邻基序 (PAM) - 近端区域中的单核苷酸错配敏感。我们通过实验证明 Cas12j-8 能够对具有单核苷酸多态性 (SNP) 的基因进行等位基因特异性破坏。Cas12j-8 识别简单的 TTN PAM,可提供高靶位点密度。计算机模拟分析显示,Cas12j-8 能够对 ClinVar 数据库中的 25,931 个临床相关变异和 dbSNP 数据库中的 485,130,147 个 SNP 进行等位基因特异性破坏。因此,Cas12j-8 特别适合用于治疗应用。
摘要 CRISPR-Cas9 是一种强大的基因组编辑技术,其中单个向导 RNA (sgRNA) 赋予靶位点特异性以实现 Cas9 介导的基因组编辑。已经基于人类和模型生物的参考基因组开发了大量 sgRNA 设计工具。然而,现有资源并不是最佳的,因为靶向区域内的基因突变或单核苷酸多态性 (SNP) 会干扰向导-靶互补性,从而影响基于 CRISPR 的方法的效率。为了便于识别 (1) 非参考基因组中的 sgRNA、(2) 不同遗传背景下的 sgRNA 或 (3) 针对含 SNP 的等位基因的特定靶向,例如疾病相关突变,我们开发了一个网络工具 SNP-CRISPR ( https://www.fl yrnai.org/tools/snp_crispr/ )。 SNP-CRISPR 可用于根据公共变异数据集或用户识别的变异设计 sgRNA。此外,该工具还计算针对变异和参考的 sgRNA 设计的效率和特异性得分。此外,SNP-CRISPR 提供了上传多个 SNP 的选项,并使用单个 sgRNA 设计同时针对一个或多个附近的碱基变化。鉴于这些功能,SNP-CRISPR 在模型系统中以及用于疾病相关变异校正的 sgRNA 设计中具有广泛的潜在研究应用。
近年来利用CRISPR-Cas9系统构建的二倍体作物突变体文库为功能基因组学和作物育种提供了丰富的资源,然而由于基因组的复杂性,在多倍体植物中实现大规模的定点诱变是一项巨大的挑战。本文证明了利用混合CRISPR文库在异源四倍体油菜中实现基因组规模定点编辑的可行性。共设计了18,414个sgRNA来靶向10,480个目的基因,得到了1104株含有1088个sgRNA的再生转基因植株。编辑询问结果显示,178个基因中93个被鉴定为突变,编辑效率为52.2%。此外,我们发现 Cas9 介导的 DNA 切割倾向于在由同一个 sgRNA 引导的所有靶位点发生,这是多倍体植物中的新发现。最后,我们展示了利用后基因分型植物对各种性状进行反向遗传筛选的强大能力。从正向遗传研究中发现了几个可能主导脂肪酸谱和种子油含量且尚未报道的基因。我们的研究为功能基因组学、优良作物育种提供了宝贵的资源,并为其他多倍体植物的高通量定向诱变提供了良好的参考。
重瓣花表型因其在各种植物中的吸引力而被人类所选择,并且对观赏植物市场具有巨大的商业价值。在本研究中,我们调查了康乃馨、矮牵牛和玫瑰中显性重瓣花性状的遗传决定因素,并鉴定了 TARGET OF EAT (TOE) 型基因的突变等位基因,其特征是 miR172 靶序列和编码蛋白质 C 末端部分的破坏。尽管这些真双子叶植物之间存在系统发育距离,它们在白垩纪早期分化,但携带这些突变的直系同源基因都属于单个 TOE 型亚组,我们将其命名为 PETALOSA (PET)。同源性搜索使我们能够在其他各种物种中鉴定出 PET 序列。为了证实自然突变的结果,我们使用 CrispR-Cas9 在烟草 PET 基因的 miR172 靶位点内诱导病变,这导致了多余花瓣状结构的形成。本研究描述了具有经济价值的观赏物种中的 pet 等位基因,并提供了关于识别和改造 PET 基因以获得不同植物中理想的重花特性的可能性的证据。
使用CRISPR-CAS9系统在目标部位进行基础取代是一种用于基因组编辑的典型技术,具有在基因治疗和农业生产力中应用的潜力。当CRISPR-CAS9系统使用指导RNA将Cas9内核酶引导到目标位点时,它可能会误导到潜在的脱靶位点,从而导致意外的基因组编辑。尽管已经提出了几种计算方法来预测脱靶效应,但仍有提高脱靶效应能力的空间。在本文中,我们提出了一种有效的方法,称为CRISPR-M,采用新的编码方案和一种新型的多视图深度学习模型,以预测含有indels和不匹配的目标位点的tar-tar- fet效应。crispr-m利用卷积神经网络和双向长期记忆复发性神经网络来构建三支分支网络,以朝着多视图构建。与现有方法相比,CRISPR-M显示出在实际世界数据集上运行的显着性能优势。此外,在多个指标下对CRISPR-M的实验分析揭示了其提取特征并验证其对SGRNA脱离目标效应预测的优势的能力。
天使综合征 (AS) 是一种由大脑中泛素连接酶 E3A (UBE3A) 基因表达缺失引起的神经遗传疾病。UBE3A 基因在脑神经元中是父系印记。AS 的临床特征主要是由于大脑中母系表达的 UBE3A 缺失所致。大脑中存在父系 UBE3A 的健康拷贝,但被长非编码反义转录本 (UBE3A-ATS) 沉默。在这里,我们证明人工转录因子 (ATF-S1K) 可以在成年小鼠天使综合征 (AS) 模型中沉默 Ube3a-ATS 并恢复父系 Ube3a 的内源性生理表达。向尾静脉单次注射表达 ATF-S1K 的腺相关病毒 (AAV) (AAV-S1K) 即可实现全脑转导,并将神经元中的 UBE3A 蛋白恢复至野生型蛋白的 25%。ATF-S1K 治疗对靶位点具有高度特异性,在 AAV-S1K 给药 5 周后未检测到炎症反应。AAV-S1K 治疗 AS 小鼠在探索性运动(涉及粗大和精细运动能力的任务)中表现出行为恢复,类似于 AS 患者的低步行和速度。单次注射 AAV-S1K 治疗 AS 的特异性和耐受性表明 ATF 可作为 AS 的一种有前途的转化方法。
基于核酸酶失活 CRISPR/Cas (dCas) 的系统已成为一种强大的技术,可以综合重塑人类表观基因组和基因表达。尽管这些平台的采用越来越多,但它们的相对效力和机制差异尚未完全表征,特别是在人类增强子-启动子对中。在这里,我们系统地比较了最广泛采用的基于 dCas9 的转录激活因子,以及由与人类 CBP 蛋白催化核心融合的 dCas9 组成的激活因子,以及人类增强子-启动子对。我们发现这些平台在不同人类细胞类型中显示出不同的相对表达水平,并且它们的转录激活效率因效应域、效应子募集结构、靶位点和细胞类型而异。我们还表明,每种基于 dCas9 的激活剂都可以诱导增强子 RNA (eRNA) 的产生,并且这种 eRNA 诱导与同源启动子的下游 mRNA 表达呈正相关。此外,我们使用基于 dCas9 的激活剂来证明人类增强子和启动子之间可以存在内在的转录和表观遗传互惠性,并且可以通过将基于 dCas9 的转录激活剂靶向增强子来合成驱动增强子介导的下游启动子的追踪和参与。总之,我们的研究为增强子介导的人类基因表达控制和基于 dCas9 的激活剂的使用提供了新的见解。
摘要 使用改变目标基因组信息的技术进行靶向基因组修饰,已为基础生物学和应用生物学的多项研究做出了贡献。在基因打靶中,使用同源重组将打靶载体整合到靶位点。传统上,携带多个基因突变的小鼠是通过胚胎干细胞中的连续重组和耗时的单基因突变小鼠杂交产生的。然而,这种策略存在几个技术问题。第一个问题是基因打靶的频率极低,这使得获得重组克隆是一项极其耗费人力的任务。第二个问题是可以应用基因打靶的生物材料数量有限。传统的基因打靶几乎不会发生在大多数细胞系中。然而,一种使用设计核酸酶的新方法可以在基因组 DNA 中引入位点特异性双链断裂,提高了受精卵中基因打靶的效率。这种包括 CRISPR-Cas 系统的新方法也扩大了可以应用基因打靶的生物材料的数量。转基因的靶向整合可通过基于同源重组(HR)、微同源介导的末端连接(MMEJ)或非同源末端连接(NHEJ)的策略实现。本文,我们总结了靶基因修饰的各种策略,包括传统基因靶向与设计核酸酶的比较。