摘要 - 高数据速率和低延迟车辆到车辆(V2V)通信对于未来的智能运输系统至关重要,以实现协调,增强安全性和支持分布式计算和情报要求。但是,制定有效的沟通策略需要现实的测试场景和数据集。这在高频带中很重要,在高频带中,有更多的频谱可用但收获该带宽受到方向传输的需求和信号传播对阻塞的敏感性的挑战。这项工作介绍了第一个用于研究MMWave车辆到车辆通信的大规模多模式数据集。它提出了一个两辆车测试台,该床包括来自360º相机,四个雷达,四个60 GHz阶段阵列,一个3D激光雷达和两个精确的GPS的数据。数据集包含白天和黑夜驾驶的车辆,在城堡和农村环境中,速度为120公里,速度高达每小时100公里。从卡车到自行车的所有图像中都检测到超过一百万个物体。这项工作进一步包括详细的数据集统计信息,这些数据集统计数据证明了各种情况的覆盖范围,并突出了该数据集如何启用新颖的机器学习应用程序。
HRV1,HRV群集1; TLFD,胸骨筋膜的变形; 95%CI,95%置信区间; F,整体模型测试; SE,标准错误; T,T统计; SDNN,RR间隔之间的标准偏差; SD2,Poincaré并行标准偏差; LF,低频带功率。* Bonferroni调整后的P值。1 TLFD是平方转换的,以满足参数测试的标准。重大结果以粗体打印。
广播式自动相关监视 (ADS-B) 技术有望通过更高效、及时和更易于访问的方式传播飞行数据,从而提高民用航空电子设备的安全性。此外,到 2020 年,该技术将被强制采用。但是,通信质量并不完全令人满意。事实上,数据包丢失的原因有很多,例如障碍物、天气条件,以及 ADS-B 预期工作的频带与飞机使用的其他传统通信技术共享的频带相同。利用该领域的一些先前工作,对这一特定背景下的数据包丢失问题进行初步研究,本文分析了 Opensky 网络公共数据库,以提供更多提示和真实统计数据,说明表征飞机通信的数据包丢失以及 ADS-B 技术的整体可靠性。通过分析超过 21 GB 的真实飞机生成轨迹,我们发现最近几年推出的模型存在严重的局限性。这可以归因于多种原因,包括网络吞吐量和密度的增加,以及——正如我们的分析发现的——有相当一部分 ADS-B 实施不符合标准建议。总体而言,本文旨在:(i) 阐明当前文献中的一些差距;(ii) 为 ADS-B 通信提供新的、更新的数据包丢失模型;(iii) 激励
深脑刺激(DBS)是针对众多神经系统疾病的患者的一种治疗方法,包括帕金森氏病[1-4],必需震颤[5-7]和肌张力障碍[8-11] [8-11],药物治疗不足。护理标准目前以连续的方式提供DBS,而无需自动反馈以根据不断变化的运动标志调整治疗。最近的工作集中在自适应DBS(ADB)的发展上,在这种发展中,刺激是针对患者临床状态的生物标志物进行调节的[12]。神经生理生物标志物,例如从DBS铅记录的局部局部场电位(LFP)的信号特性,经常被提议作为ADBS系统的反馈信号[13,14]。例如,从丘脑下核(STN)记录的β范围(13-30 Hz)振荡与帕金森氏病的症状相关[13],并且成功实施了β波段功率作为基于实验室的ADB实施的控制信号[15-17]。在宫颈肌张力障碍中使用较低的频带(4-12 Hz)在宫颈肌张力障碍(GP)[18]中试用了类似的范例。因此,使用皮质下LFP生物标志物成功应用ADB是依赖于神经信号的准确感测,尤其是在感兴趣的频带中。
摘要 一个多世纪前脑电图 (EEG) 的创新支持了在临床健康和研究应用中评估大脑结构和功能的技术。EEG 信号在其频率范围内被识别为 delta(0.5 至 4 Hz)、theta(4 至 7 Hz)、alpha(8 至 12 Hz)、beta(16 至 31 Hz)和 gamma(36 至 90 Hz)。压力是由多种生活事件引起的情绪紧张感。例如,担心某事、承受压力和面临重大挑战都是压力的原因。人体以各种方式受到压力的影响。它会促进炎症,从而影响心脏健康。自主神经系统在精神压力下被激活。创伤后应激障碍和阿尔茨海默病是常见的大脑应激障碍。以前曾使用多种方法来识别压力,例如磁共振成像、单光子发射计算机断层扫描和脑电图。 EEG 通过在头皮上放置小电极来识别人脑中的电活动。这是一种有用的非侵入性方法,可以收集压力激素的反馈。此外,它可以作为测量压力的可靠工具。此外,实时评估人类压力是复杂且具有挑战性的。本综述根据医学和研究经验展示了频带对精神压力的威力以及频带的行为。
摘要:机械应变工程对于许多集成的光子应用一直很有希望。然而,对于材料电子带隙的工程,应变均匀性与与光子集成电路(图片)的集成兼容性之间存在权衡。在此,我们采用了氮化硅(SIN X)应激源的简单凹陷型设计,以达到均匀的应变,并在图片上感兴趣的材料中具有增强的幅度。正常的,均匀的0.56%薄层紧张的锗(GE) - 隔离剂(GOI)金属 - 肌电指挥剂 - 金属光二极管。该设备在1,550 nm时表现出1.84±0.15 A/W。在1,612 nm处提取的GE吸收系数增强了〜3.2×至8,340 cm -1,并且优于0.53 Ga 0.47的高度,最高为1,630 nm,受测量光谱限制。与非衰退的设备相比,观察到C频带中的额外吸收系数改善10%至20%,在L频带中观察到40%至60%。这项工作促进了自由空间PIC应用的凹陷GOI光电二极管,并为各种铺平了道路(例如ge,GESN或III-V基于图片上均匀紧张的光子设备。
图1。使用三个不同试剂盒纯化的高拷贝pDNA的平均产率。屈服代表三份提取的平均值。图3。使用三个不同试剂盒分离的高拷贝pDNA。(a)将凝胶运行10分钟,以可视化RNA污染。红色框指示如果有RNA污染,则频带在哪里。(b)凝胶再运行65分钟,以将GDNA和超螺旋pDNA带分开。蓝色框指示GDNA的存在。
·在海平面附近的无风环境中测量无人机的最大飞行速度。·最长的飞行时间以21.6 km/h(6 m/s)的恒定速度在无风环境中进行测量,记录下来,电池电量为0%。·在开放,无障碍和电磁无干扰环境中,并且在大约120米的飞行高度下,可以根据FCC标准(单向,无返回到家)达到遥控器的最大通信距离。·某些国家和地区不支持5.8 GHz频带;使用前请了解当地法律法规。
摘要:癌症是全球最常见的死亡原因之一。脑肿瘤是一种严重且危险的肿瘤,其检测技术存在一些困难;早期肿瘤较小时很难确定其位置。本研究的目的是设计一种适合检测脑癌肿瘤的低成本微带贴片天线传感器。使用计算机仿真技术 CST Studio Suite 3D EM 仿真和分析设计了具有不同频率 2.8 GHz、3.9 GHz、5GHz 和 5.6GHz 的贴片天线,用于诊断脑肿瘤。已使用六层脑模型(脂肪、硬脑膜、脑、皮肤、脑脊液 (CSF) 和头骨)对这些共振频率(低频带 (L-B) 2 GHz、中频带 (M- B) 3.9-5 GHz 和高频带 (U-B) > 5 GHz)进行了比较研究。在脑模型上有肿瘤细胞和没有肿瘤细胞的两种情况下评估了设计的贴片传感器。已观察到三个参数,即频率相移、深度反射回波损耗和功率吸收,用于指示肿瘤细胞的存在。这项研究的结论是,中频带 (M-B) 具有良好的穿透力和更好的回波损耗深度(约 - 20dB)。同时,较高频段提供 21 MHz 相移的高分辨率,但差异回波损耗的深度值仅为 -0.1dB。所提出的工作可以为生物医学应用的贴片传感器的设计提供途径。