在开发持续增加的地区,设施可能面临土地、空中、水和电磁频谱资源使用减少的问题,因此,它们开展改善作战战术的现实测试和训练活动的能力受到限制。例如,手机信号塔会妨碍飞行训练,住宅和商业场所的光污染会限制夜视练习,建筑物会在降落伞区附近造成安全隐患。武器测试和飞机操作可能会引起邻近社区对噪音、灰尘、烟雾和振动的投诉,从而限制操作方式或时间。随着城市扩张分割或改变设施和靶场附近的栖息地,濒危物种可能会在国防部保护的土地上寻求庇护,从而产生或加剧监管限制,并增加国防部管理受威胁、濒危和其他高危物种的责任。
无人驾驶飞机系统 (UAS) 为新时代的专业任务带来了巨大希望,包括个人空中交通、货运飞行操作、航空勘测、检查、消防等。预期的市场增长是巨大的。要释放其可扩展性和现有优势,需要一个人同时监督多个航班,专注于多飞行器任务管理,并将其在控制飞机飞行路径方面的主动作用移交给自主系统。实现这些可扩展性优势的关键是最低限度地访问国家空域系统 (NAS),这对自动驾驶 UAS 飞机操作提出了一些独特的挑战。这些包括与现有空域结构和操作兼容的要求,包括目视飞行规则 (VFR) 和仪表飞行规则 (IFR),这两者都不是为满足 UAS 的独特需求和能力而开发的。
C-130J 开发背后的基本理念是提供一种经济的选择,让运营商能够用现代化、最新的运输机取代现有的高时间/高运营成本飞机。C-130J 通过两个主要领域的现代化实现了这一目标:推进系统和航空电子设备。新的推进系统大大提高了飞机性能,减少了维护飞机所需的人力。新的航空电子设备大大自动化了飞机操作,从而减少了驾驶飞机所需的人力,也减少了维护人力。虽然洛克希德马丁公司从未设想过每个任务都适合双人驾驶舱,但先进的航空电子设备包提供了足够的自动化,让两名飞行员能够在大多数战术和战略任务中舒适安全地操作飞机。
开发 C-130J 的基本理念是提供一种经济实惠的选择,使操作员能够用现代化、最新的运输机取代现有的高时间/高运营成本飞机。C-130J 通过两个主要领域的现代化实现了这一目标:推进系统和航空电子设备。新的推进系统大大提高了飞机性能,减少了维护飞机所需的人力。新的航空电子设备大大自动化了飞机操作,从而减少了驾驶飞机所需的人力,也减少了维护人力。虽然洛克希德马丁公司从未设想过每项任务都适合双人驾驶舱,但先进的航空电子设备提供了足够的自动化,使两名飞行员能够在大多数战术和战略任务中舒适安全地操作飞机。
在开发持续增加的地区,设施可能面临陆地、空中、水和电磁频谱资源使用减少的问题,因此,它们开展真实测试和训练活动的能力会受到限制,而这些活动无法改善作战战术。例如,手机信号塔会妨碍飞行训练,住宅区和商业区的光污染会限制夜视练习,建筑物会在降落伞区附近造成安全隐患。武器测试和飞机操作可能会引起邻近社区对噪音、灰尘、烟雾和振动的投诉,从而限制操作方式或时间。由于城市扩张会割裂或改变设施和靶场附近的栖息地,造成或加剧监管限制,并增加国防部管理受威胁、濒危和其他高危物种的责任,濒危物种可能会在国防部受保护的土地上寻求庇护。
在开发持续增加的地区,设施可能面临陆地、空中、水和电磁频谱资源使用减少的问题,因此,它们开展真实测试和训练活动的能力会受到限制,而这些活动无法改善作战战术。例如,手机信号塔会妨碍飞行训练,住宅区和商业区的光污染会限制夜视练习,建筑物会在降落伞区附近造成安全隐患。武器测试和飞机操作可能会引起邻近社区对噪音、灰尘、烟雾和振动的投诉,从而限制操作方式或时间。由于城市扩张会割裂或改变设施和靶场附近的栖息地,造成或加剧监管限制,并增加国防部管理受威胁、濒危和其他高危物种的责任,濒危物种可能会在国防部受保护的土地上寻求庇护。
开发 C-130J 的基本理念是提供一种经济实惠的选择,使操作员能够用现代化、最新的运输机取代现有的高时间/高运营成本飞机。C-130J 通过两个主要领域的现代化实现了这一目标:推进系统和航空电子设备。新的推进系统大大提高了飞机性能,减少了维护飞机所需的人力。新的航空电子设备大大自动化了飞机操作,从而减少了驾驶飞机所需的人力,也减少了维护人力。虽然洛克希德马丁公司从未设想过每项任务都适合双人驾驶舱,但先进的航空电子设备提供了足够的自动化,使两名飞行员能够在大多数战术和战略任务中舒适安全地操作飞机。
在开发持续增加的地区,设施可能面临陆地、空中、水和电磁频谱资源使用减少的问题,因此,它们开展真实测试和训练活动的能力会受到限制,而这些活动无法改善作战战术。例如,手机信号塔会妨碍飞行训练,住宅区和商业区的光污染会限制夜视练习,建筑物会在降落伞区附近造成安全隐患。武器测试和飞机操作可能会引起邻近社区对噪音、灰尘、烟雾和振动的投诉,从而限制操作方式或时间。由于城市扩张会割裂或改变设施和靶场附近的栖息地,造成或加剧监管限制,并增加国防部管理受威胁、濒危和其他高危物种的责任,濒危物种可能会在国防部受保护的土地上寻求庇护。
人为失误是影响飞行安全的重要风险因素。尽管人为失误评估与减少技术(HEART)是一种有效的人为可靠性推导工具,但它尚未应用于飞行安全评估。传统的HEART严重依赖于单个专家的判断,导致评估影响比例(APOA)计算不准确,也无法提供针对飞行安全问题的补救措施。针对HEART的这些缺陷,本研究提出了一种综合的人为失误量化方法,利用改进的层次分析法确定APOA值。然后,将这些值融合到HEART方法中以得出人为失误概率。完成某项飞行任务来评估人为可靠性。结果表明,该方法是一种合理可行的工具,可用于量化飞机操纵过程中的人为失误概率并评估飞行安全性。此外,还识别了影响飞行安全的关键错误产生条件,并针对高错误率操作提供了改进措施。所提出的方法有助于减少飞机操作过程中人为错误的可能性并提高飞行安全水平。
摘要 — 研究了核电站 (NPP) 现场管理的认知架构,其中融入了人工智能 (AI)。结合机器人智能算法对正常运行和事故进行建模,其中随机抽样在量化中起主要作用。研究计算了事故动力学模拟器与机组人员情境认知模型 (ADS-IDAC) 中的信息、决策和行动以及工厂操作的认知技能。模拟显示了 ADS-IDAC 建模和仿真结果,在第 21 和第 21.75 序列中有两个峰值。否则,在第 13.25 序列中有几个峰值,一个大峰值。大峰位于心理状态、环境和身份的第 25.75 序列中。事故情况与认知系统的动作有关。在操作案例中,显示了各种信号,其中工厂的操作可以显示机器人要执行的几种操作。该图显示了核认知架构的过程。通过设计的模型调查了一起核事故,其中机器人的行为由人工大脑量化。本文开发的算法可应用于其他类型的复杂工业系统,如飞机操作和安全系统、航天器系统等。