旋翼飞机为探索外星环境提供了独特的功能。与诸如漫游者之类的勘探工具相比,旋翼船能够越来越快地到达感兴趣的目的地。此外,它们只需要合适的起飞和降落区,并且可以飞越由于障碍物或粗糙地形而可能无法遍历流浪者可能无法穿越的地形。这些优势激发了火星的创造任务,该任务涉及第一个飞行火星的旋翼飞机[1]。这项任务的成功继续激励未来的任务,例如可能使用直升机来返回火星样本[2]。设计一种在火星氛围环境中运行的首个旋翼飞机,需要进行设计,开发和操作的独特工具。在开发的工具中是Helicat-darts(简单地称为简洁的Helicat),用于旋转动力学建模和仿真。此仿真工具是指导,导航和控制(GNC)算法和软件开发的测试床,并作为分析飞行性能和动态的工具。Helicat在Ingenuity任务的整个生命周期中都使用,包括以下内容:
迈诺特空军基地位于 83 号公路旁,这是北达科他州的主要南北公路之一。这条公路也是穿越该州中部的空中交通的飞行路线。空军基地周围有许多小型机场(见图 6,注意:本手册中的图表摘录自分区图和国防部仪表进近图,仅供参考。它们不适用于飞行中。),其中大多数飞行都使用目视飞行规则 (VFR)。为了帮助飞机安全分离,迈诺特进近管制中心在当地飞行区域提供飞行跟踪。图 2、3 和 4 描绘了迈诺特空军基地附近军用飞机通常使用的飞行路径。特别重要的是位于迈诺特 D 级空域内的区域(见比林斯分区图)。在飞越距机场 5.2 海里以内的 2500 英尺高程 (或 4168 英尺平均海平面) 以下的该区域之前,所有飞行员都必须联系迈诺特空军基地控制塔,并在指定空域内飞行时与其保持无线电联系。
2.1.3 其他空域 其他空域包括达格特架、R-2515 金三角、特罗纳 CFA 和特罗纳走廊。达格特架(参见图 2-1 中黄色突出显示的部分)由巴斯托东部 ATCAA 和 R-2502 东部空域 FL240 及以上组成,不能作为空域细分进行调度。达格特架是根据一份协议书建立的,旨在为 FAA 提供通过达格特/赫克托走廊的 IFR 交通救援控制。达格特架以及肖肖尼南部 ATCAA 空域仍处于洛杉矶 ARTCC 控制之下,直到约书亚进近请求并获得控制权。金三角是 R-2515 的一部分,延伸至 R-2524 南部边界向西延伸的北部。请求东西飞越金三角的飞机可能需要停留在卡德巴克湖以北。金三角的坐标:
周围区域的独特地形会引起严重的风效应,这通常会影响飞行最后阶段的机尾。当风向在 110° 到 250° 之间且风速超过 15 节时,在进近和飞行到岩石背风处的最后阶段可能会出现严重湍流。这种湍流会使着陆变得危险或无法着陆,因此机长在这种情况下进近时应极其小心。水面上经常可以看到湍流和阵风,图表 B3 表示了湍流效应。超过 25 节的西南风可能导致在接近 27 号跑道时形成水龙卷。飞越或靠近这些水龙卷已被证明是非常危险的,会导致飞机迅速失去控制,机翼严重下垂,以及姿态、高度和航迹的非指令改变。空中交通管制将会报告从塔台看到的水龙卷,但机长应注意,这种现象可能在没有任何警告的情况下迅速出现。
通过空中和太空快速运送人员、货物和信息的能力是无与伦比的。例如,如果你想把药品送到大洋彼岸的地方怎么办?乘船横渡大洋,还是乘飞机更快?如果你必须到达几百英里外的一个城镇怎么办?坐汽车还是坐飞机更快?这些问题的答案当然是乘飞机。空中和太空力量的另一个独特之处是海拔。你不仅可以飞越路上的障碍物,还可以看过去。海拔高度使你能够看到远处的物体。在本章中,你将发现我们为什么应该如此关心空中和太空领域。它的独特性以及我们使用它的能力是一个有趣的故事。起初有一些必须克服的问题。学习飞行是一项非常困难的任务。必须回答的第一个问题相当明显。想一想。您将如何弄清楚如何飞行?您会问一只鸟吗?你能告诉一只鸟你如何能够跑步或行走吗?为什么你能够比别人跑得更快、跳得更高?这并不像您想象的那么容易,是吗?信不信由你,这两个主题是相关的。行走和飞行有几个共同点。例如,你需要某种力量来让你前进。你还需要更多
关键词:自动化、匹配、真正射影像、无人机 摘要:本文介绍了一种利用无人机平台获取的图像生成真正射影像的摄影测量方法。该方法是一种自动化的多步骤工作流程,由三个主要部分组成:(i) 通过基于特征的匹配和共线方程/束块调整进行图像定向,(ii) 使用能够管理多幅图像的相关技术进行密集匹配,以及用于 3D 模型纹理化的真正射影像映射。它允许对稀疏的收敛图像块进行自动数据处理,以获得最终的真正射影像,其中考虑了诸如自遮挡、鬼影效应和多重纹理分配等问题。本文通过一个关于无人机飞越意大利拉奎拉圣玛丽亚教堂的真实案例研究,阐述和讨论了不同的算法。最终结果是一张严格的真正射影像,用于检查大教堂的屋顶,该教堂在 2009 年的地震中遭到严重损坏。
飞行路径 A3 是我们当前 TALLA 飞行路径的 RNAV 复制,将在第 1 阶段引入,供喷气式和非喷气式飞机使用。在第 1 阶段,A3 没有时间限制。预计在 2018 年使用 R24 时,每天将有大约 83 个航班使用此飞行路径,在 2024 年,每天将有 72 个航班使用此飞行路径。这比我们在第二次咨询中提出的计划有所增加,当时我们没有计划使用 A3 飞行路径。飞行路径 A6 将在第 2 阶段引入,仅适用于涡轮螺旋桨飞机。该飞行路径仅在高峰时段(06:00-09:59)使用,当英国皇家空军柯克纽顿有滑翔活动时将关闭。预计 2019 年每天将有大约 11 个航班使用此航线,2024 年每天将有 13 个航班使用此航线(R24 正在使用)。由于这是一条新航线,这 13 个航班将飞越以前从未飞越过的区域。
摘要:简介:探索太空并收集有关其大气状况的数据可以推动先进空间技术的发展,例如大气传感器和远程监控系统。然后,在天体物理学和太空探索等看似遥远的领域的科学研究可以通过促进创新和可持续技术发展为实现可持续发展目标做出贡献。方法:我们提出了一种基于沿特征函数获取的短期平均/长期平均相位选择器来识别光电子峰的自动四步检测算法。在声明检测之后,对较长的信号窗口进行附加分析以表征光电子峰并消除噪声干扰。结果:该算法的模块化设计使得可以在四个步骤中的任何一个步骤中替换替代策略,并在新数据集上快速实施。讨论:通过基于所有可用土卫六飞越数据的概览示例说明了该算法的实用性。有关土卫六大气中光电子峰的知识可以提供对应对地球气候变化有价值的见解。结论:了解行星等离子体环境,包括它们与太阳风和其他空间天气现象的相互作用,可以间接有助于我们了解地球气候系统。
Arianegroup目前正在基于通过聚合物电解质膜(PEM)电解仪基于推进剂,氢和氧气的轨道产生的创新半电力推进系统(WPS)。推进系统由应在其操作环境中测试的新技术和组件组成,以验证其在太空中的功能。因此,开发了一个演示器系统概念,该概念应在立方体平台上进行测试。在第一步中对WPS的当前发展进行了检查,然后通过项目分解结构以及演示者水推进系统(DWP)的设计和开发计划对Cubesat任务进行了描述。与此处的结果结合了有关合适的立方体平台的文献研究的结果,从而定义了示威者系统的技术要求。这些技术要求构成了开发DWP概念的基础,该概念通过MATLAB计算对电解仪产生的气体的行为进行了分析。对于示威者推进系统,在最后一步中定义了初步任务。它概述了系统的预期性能,审查轨道并启动可能性并定义了太空中的操作过程。此外,还计算了一个链路预算,该链接预算可在Cubesat的地面站飞越期间传输数据速率。
美国联邦航空管理局 (FAA) 技术精湛、尽职尽责的男女工作人员每年引导大约 2600 万次 1 航班飞越美国航空航天系统。0F 2 通过辛勤工作、创新和坚持不懈,我们取得了航空史上最好的安全记录。我们基础设施的规模和复杂性、用户群的多样性、对安全和卓越的承诺以及我们在全球航空界的领导地位使我们与众不同。在这个坚实的基础上,我们正迈入通信、导航和监视技术快速进步的时代,同时也面临着前所未有的挑战,因为我们的国家、我们的行业和我们的全球合作伙伴的经济、社会、环境和能源需求正在发生变化。因此,我们成熟的安全系统需要持续改进的流程。此外,新技术和商业模式正在重塑与国家空域系统 (NAS) 互动的人员以及飞机在其中的运行方式。在这些变化中,最先出现的是大量非传统领域的新进入者,例如商业航天、无人机以及可能重新引入的超音速飞行。航空业正处于运营发生重大变化的风口浪尖,因为它正朝着更加依赖自动化和数据使用的系统发展。面对这些挑战,联邦航空管理局将在国内和国际层面积极努力,以维持和提高民航目前的安全水平。