非均相催化中的高通量实验为在可重复条件下生成大型数据集提供了有效的解决方案。从这些数据集中提取知识大多采用统计方法,旨在优化催化剂配方。先进的机器学习方法与高通量实验相结合,具有巨大的潜力,可以加速预测性地发现当前统计实验设计中不存在的新型催化剂配方。本观点描述了从催化剂合成的统计实验设计到应用于催化剂优化的遗传算法,以及最终使用实验数据进行随机森林机器学习以发现新型催化剂的选择性示例。最后,本观点还展望了应用于材料发现实验数据的先进机器学习方法。
摘要 — 高通量卫星 (HTS) 及其数字有效载荷技术有望在即将到来的 6G 网络的推动下发挥关键作用。HTS 主要设计用于提供更高的数据速率和容量。在波束成形、高级调制技术、可重构相控阵技术和电子可控天线等技术进步的推动下,HTS 已成为未来网络生成的基本组成部分。本文全面介绍了 HTS 系统的最新进展,重点关注标准化、专利、信道多址技术、路由、负载平衡和软件定义网络 (SDN) 的作用。此外,我们还为下一代卫星系统提供了一个愿景,我们将其称为超高通量卫星 (EHTS),该卫星系统面向自主卫星,由这些系统的主要要求和关键技术支持。EHTS 系统的设计将使其最大限度地提高频谱重用和数据速率,并灵活地控制容量以满足用户需求。我们介绍了一种用于未来再生有效载荷的新型架构,同时总结了该架构所带来的挑战。
系统和JAVA Codon Adaptation Tool 进行密码子适配。优化后的序列由上海生工生物工程有限公司通过 BamH1 和 XhoI 酶切位点合成并克隆到来自 pGEX-6p-1 质粒(美国 Novagen)的表达载体中。将重组质粒 pGEX-6p-1-Mpro 转化的 E. coli BL21(DE3)细胞(美国 Invitrogen)在 2 L Luria-Bertani 培养基中于 37 ℃ 下生长至 OD600 达到 0.6 后,加入 0.2 mM IPTG,16 ℃ 诱导重组蛋白表达过夜。将菌体悬浮在 PBS 中,超声波破碎。离心收集上清液并与谷胱甘肽 Sepharose 4B 琼脂糖(美国 GE Healthcare)混合,4 ℃ 下孵育 3 h。然后用 PBS 清洗珠子,并加入 preScission 蛋白酶 (GE) 以切割 GST 标签。含有
慢性肾脏疾病(CKD)代表了一个重要的全球健康问题,与我们的医疗保健系统的高经济成本有关。ckd是肾脏对肾脏的不可逆转损害逐渐丧失肾脏功能的条件,肾脏影响了全球约10%的成年人口。分化人类胚胎(ES)和诱导多能茎(IPS)细胞成功能性肾脏组织的能力为开发新疗法的新工具提供了新的工具,以减缓肾脏疾病的进展。此外,发现肾脏器官的发现是自组织的3D结构,这些结构包含类似于体内对应物的某些方面的功能性肾细胞类型,克服了对常见单层培养系统中细胞相互作用的极限建模的限制。肾脏类器官为特定于患者的肾脏疾病,研究肾脏发育和进行肾毒性化合物筛查提供了新的机会。近年来,几个小组通过逐步引导人多能干细胞(HPSC)通过晚期原始条纹,中间中胚层和中胚层的阶段引起人类多能干细胞(HPSC)来建立直接分化方案,从而引起了胎儿聚集体,然后引起肾小球,然后导致最终形成的肾脏肾小管(图1)。但是,许多方案要求分化培养物分解为单细胞悬浮液,并在分化过程中重新聚集,这可能导致效率下降,肾脏器官较低的产量和较高的实验变异性。To standardize the generation of kidney organoids, we developed STEMdiff™ Kidney Organoid Kit, containing a specialized serum-free medium formulation that enables highly efficient and reproducible differentiation of hPSCs into kidney organoids that model the developing nephron—composed of podocytes, proximal and distal tubules, and its associated endothelium.此外,我们使用简单的两阶段分化系统最大程度地减少了细胞培养操作,这与96和384孔板中的表型高通量筛选兼容。
图 1. 比较类似产品配置中 DH5α 感受态大肠杆菌与 NEB ™ 5-alpha 和 Zymo ™ Mix and Go! ™ 5α 感受态细胞的转化效率。根据制造商推荐的方案,使用 10 pg pUC19 DNA 进行三次转化来测量转化效率。每次转化均进行两次接种。
摘要 增材制造 (AM) 是一种颠覆性技术,具有制造复杂几何形状零件和修复中断的供应链的独特能力。然而,许多 AM 技术的加工特性很复杂,因为原料熔化的加热和冷却循环很复杂。因此,将用于传统制造的材料设计和加工优化方法直接应用于 AM 技术具有很大的挑战性。在这篇观点论文中,我们讨论了一些正在进行的高通量 (HT) 实验的努力,这些实验可用于材料开发和加工设计。特别是,我们关注基于束和粉末的 AM 技术,因为这些方法在 HT 实验中已经取得了成功。此外,我们提出了将 AM 技术用作材料信息工具以促进材料基因组的新机会。
请引用本文:Konrad, SF 等人(2021 年)。通过 AFM 成像确定 DNA 和核小体构象的高通量管道。Bio-protocol 11(19): e4180。DOI:10.21769/BioProtoc.4180。