与正在进行的I期试验(NCT03784625)相符的摘要,该试验专门针对黑色素瘤靶向放射性核素治疗(TRT),我们探索了免疫系统与黑色素配体[131 I] ICF01012单独或与免疫治疗疗法合并的相互作用(ICF01012)。在这里我们证明[131 I] ICF01012诱导免疫原性死亡,其特征是细胞表面暴露的膜联蛋白A1和钙网蛋白的显着增加。与免疫功能低下相比,[131 I] ICF01012增加了免疫能力小鼠的存活率(29 vs. 24天,p = 0.0374)。流式细胞仪和RT-QPCR分析强调[131 I] ICF01012诱导肿瘤微环境中的适应性和先天免疫细胞募集。[131 I] ICF01012与ICI(抗CTLA-4,抗PD-1,抗PD-L1)的组合表明,公差是一种主要的免疫逃逸机制,而TRT后不存在疲劳。此外,与单独使用TRT相比,[131 I] ICF01012和ICI组合有系统地导致生存率延长(P <0.0001)。具体而言,[131 I] ICF01012 +抗CTLA-4组合与单独的抗CTLA-4相比显着提高生存率(41 vs. 26天; P = 0.0011),而没有毒性。这项工作代表了TRT诱导的抗肿瘤免疫反应修饰的首个全局表征,表明耐受性是一种主要的免疫逃逸机制,而将TRT和ICI结合在一起是有希望的。
摘要 Knufia petricola 是一种黑真菌,它在极端和贫营养环境中定殖在暴露在阳光下的表面。作为生态上重要的异养生物和人造表面上的生物膜形成者,黑真菌形成了最抗性的生物腐烂生物群之一。由于其在无菌培养中生长速度适中,并且有可用的转化和 CRISPR/Cas9 介导的基因组编辑方案,K. petricola 被用于研究嗜极黑真菌和耐极端黑真菌共同的形态生理适应性。在本研究中,实施了细菌衍生的四环素 (TET) 依赖性启动子 (Tet-on) 系统,以实现 K. petricola 中的可控基因表达。通过使用 GFP 荧光、色素合成(黑色素和类胡萝卜素)和恢复的尿嘧啶原养型作为报告基因,研究了 TET 调控构建体的功能性,即剂量依赖性诱导性。新生成的包含 Tet-on 构建体的克隆载体以及 K. petricola 基因组中用于颜色选择或中性插入表达构建体的已验证位点完善了反向遗传学工具箱。通过使用 2A 自裂解肽,可以根据需要从不同的基因组位点或从单个构建体表达一个或多个基因,例如,用于在 K. petricola 细胞中定位蛋白质和蛋白质复合物或使用 K. petricola 作为表达异源基因的宿主。
酪氨酸酶是一种在黑色素生物合成中至关重要的含铜的酶,是人类超质刺激和黑色素瘤的关键药物靶标。使用脂肪菌(Abtyr)的酪氨酸酶(ABTYR)测试化合物的抑制作用一直是从合成和自然来源中鉴定潜在的疗法的常见实践。但是,人类酪氨酸酶(HTYR)和ABTYR之间的结构多样性在开发治疗上有效的药物方面提出了挑战。在这项研究中,我们将回顾性和计算分析与实验数据相结合,以洞悉针对HTYR和ABTYR的新抑制剂的发展。我们观察到硫代醇™和我们的4-(4-羟基苯基)哌嗪-1-基源(6)对这两种酶的对比作用;基于这一发现,我们旨在研究其在HTYR和ABTYR中的结合模式,以确定可显着提高亲和力的残基。所有信息导致发现Com Pound [4-(4-羟基苯基)哌嗪-1-基](2-甲氧基苯基)甲酮(MEHT-3,7),在ABTYR(IC 50 =3.52μm)和Htyr(IC 50 = 50 =5.4μm)上显示出对ABTYR(IC 50 =3.52μm)的综合活性。基于这些成就,我们建议对我们的计算结果开发,以提供相关的结构信息,以开发较新的双靶向分子,可以在ABTYR上先对ABTYR进行初步测试,以作为快速且廉价的筛选程序在HTYR上进行测试。
•这是世界上所有领域的首要发展,包括在微生物中繁殖有用的菌株,农业,渔业和牲畜产品的繁殖,以及将其应用于基因治疗,通过大学机构,大型公司,大型公司,大型公司,捐赠公司之间的密切协作,可以改善研究和发展能力。许多风险投资公司,包括酥脆的治疗剂,编辑医学,内部治疗疗法和光束治疗药,正在从事农作物开发,工业能源开发和人类疾病治疗方面的尖端研究与发展。 •CRISPR/CAS9,CAS12A,CAS13以及许多与CRISPR相关的基本技术和应用技术知识产权都得到了保护。 •Talaen的高油酸大豆的生产和工业用途已经发展。 •主动促进体内和离体基因组编辑处理。 Laber先天性黑色素症,经胸蛋白淀粉样变性和镰状细胞疾病的临床试验已经开始如体内基因组编辑治疗。 •计划进行体内基础变体疗法(镰状细胞疾病)的临床试验。 •使用ZFN和CRISPR进行基因组编辑治疗的研发临床试验以及更安全的表观基因组编辑治疗正在进行中。已有30多次临床试验参加了FDA,领先的基因治疗研究。 •新型核酸检测技术(夏洛克和检测方法)已经开发出来,并正在作为新型冠状病毒中POCT的诊断剂开发。
CM 是发生在眼表的恶性黑色素细胞病变,发病率较低,但近几十年来在欧洲和美国的发病率有所上升(4-8)。据估计,其在美国和欧洲的发病率约为每百万 0.5 至 1.0 人(4)。手术切除后,CM 经常局部复发,复发率估计在 30% 至 60% 之间,并可导致致命的转移(9-13)。肿瘤远处转移的全身治疗选择有限,在 10 年随访中,约 10% 至 35% 的患者因转移而死亡(9-13)。CM 与皮肤黑色素瘤有许多相似之处,包括淋巴转移、临床特征和分子遗传模式。与皮肤黑色素瘤一样,CM 中的突变负荷很高,整个基因组中约有 90,000 个突变,CM 中的大多数突变是胞嘧啶到胸腺嘧啶的转变,可能是紫外线诱导损伤的后遗症 (14-16)。UM 通常表现出明显较低的突变负荷,也涉及不同的突变,UM 的临床特征与 CM 有很大不同。CM 和 UM 已被讨论为代表不同类型的癌症 (17)。作为推论,在皮肤黑色素瘤中常见的突变,如 BRAF 外显子 15 中的 V600E、NRAS 外显子 3 中的 Q61L 或 NF1 突变,也在 CM 中检测到。在 CM 中,BRAF 突变占 29% 至 35%,NRAS 突变占 18%,NF1 突变占 33%
恶性黑色素瘤是最致命的皮肤癌。它起源于黑色素细胞,也可能出现在身体的其他部位。早期诊断和适当的医疗护理可为患者提供良好的预后,超过 95% 的患者可获得长达 5 年的生存率。然而,转移性黑色素瘤患者的长期生存率仅为 5%。事实上,恶性黑色素瘤以其对大多数当前疗法的强烈抵抗而闻名,其特征是遗传和表观遗传变异。在皮肤黑色素瘤 (CM) 中,遗传变异与耐药性有关,但这种耐药性的主要原因似乎是非遗传性的,细胞亚群中的转录程序发生了变化。这种变化可以适应并逃避靶向治疗和免疫治疗的细胞毒性作用,从而导致复发。由于表观遗传变化本质上是可逆的,因此它们越来越成为癌症研究的焦点,旨在通过当前疗法预防或逆转耐药性。因此,表观遗传治疗领域是临床前和临床研究最活跃的领域之一,许多类别的表观遗传药物的效果正在接受研究。本文,我们回顾了多种表观遗传改变,主要是皮肤和葡萄膜黑色素瘤中的组蛋白改变和染色质重塑,为该领域的进一步研究提供了机会,并提供了专门控制这些改变的线索。我们还讨论了如何利用表观遗传失调为患者带来临床益处,这些疗法的局限性,以及通过组合表观遗传和传统治疗方法探索这种潜力的最新数据。
agomelatine会影响积极的昼夜节律,由于其黑色素的作用,它以生理方式改善了睡眠障碍,而没有达米纳(Damane)的睡眠结构。9,10 agomelatine对α/β肾上腺素能,组氨酸能,多巴胺能或苯二氮卓受体没有含量。此药理特征使Agomelatine具有选择性抗抑郁和催眠作用的舒适,患者友好的抗抑郁药,同时副作用较低。8,11从历史上看,对新型黑素抗抑郁药的研究始于褪黑激素,该褪黑激素在临床实践中被用作催眠剂。6之后,首先合成了褪黑激素能抗抑郁药:Agomelatine,Ramelteon和Tasimelteon。12中,在这些化合物中,只有Agomelatine被批准用于治疗捷克共和国的重大抑郁症。11与常规抗抑郁药相比,agomelatine是相对安全的抗抑郁药,它是体重中性的,不会影响性功能,不会引起终止综合征。7 agomelatine的禁忌症是与伴随使用的氟氟众和环丙沙星,进一步的肝肝硬化或患者中任何其他急性肝病的相互作用。11 agomelatine通过CYP1A2肝酶代谢为被尿液排泄的非活性代谢产物。8,11 agomelatine的剂量应尊重患者的个性,患者的耐受性,抑郁症的严重程度和心理学的变化。初始(有效)剂量为25毫克的agomelatine,在傍晚时分,患者入睡两个小时。13这种剂量可能每天增加到50毫克。14,15
蚜虫是全球大多数农作物的主要害虫。它们如此成功很大程度上是由于它们生殖方式的可塑性。它们在春季和夏季通过胎生孤雌生殖有效地繁殖,对农作物造成严重损害。夏末,胎生孤雌生殖雌性感知到光周期的缩短,并将此信号传递给胚胎,从而改变其生殖命运,产生有性个体:卵生雌性和雄性。交配后,这些雌性会产下抗寒的卵。早期研究表明,一些编码多巴胺通路关键成分的转录本在长日照和短日照条件下受到调控,这表明多巴胺可能参与了生殖模式转换之前季节性信号的传导。在本研究中,我们旨在更深入地表征该通路的表达动力学,并分析其在豌豆蚜虫 Acyrthosiphon pisum 中的功能作用。我们首先分析了在长日照(无性生殖)或短日照(有性生殖)条件下饲养的蚜虫胚胎和幼虫头中该通路的十个基因的表达水平。然后,我们进行了原位杂交实验,以在胚胎中定位编码多巴胺合成中两种关键酶的 ddc 和 pale 转录本。最后,在有性个体交配后产生的卵子中使用 CRISPR-Cas9 诱变,我们针对 ddc 基因进行了诱变。我们可以在 ddc 突变卵子中观察到强烈的黑色素化默认值,这些卵子可靠地模仿了果蝇 ddc 表型。然而,这种致命的表型使我们无法验证多巴胺作为触发胚胎生殖模式转换所必需的信号通路的参与。
摘要 初级纤毛是细胞附属物,对多种类型的信号传导至关重要。它们存在于大多数细胞类型中,包括整个中枢神经系统的细胞。纤毛优先定位某些 G 蛋白偶联受体 (GPCR),并且对于介导这些受体的信号传导至关重要。这些神经元 GPCR 中有几种已被公认在摄食行为和能量稳态中发挥作用。细胞和模型系统,如秀丽隐杆线虫和衣藻,已将动态 GPCR 纤毛定位以及纤毛长度和形状变化都与信号传导的关键有关。目前尚不清楚哺乳动物纤毛 GPCR 在体内是否使用类似的机制,以及这些过程可能在什么条件下发生。在这里,我们评估了两种神经元纤毛 GPCR,黑色素浓缩激素受体 1 (MCHR1) 和神经肽 Y 受体 2 (NPY2R),作为小鼠脑中的哺乳动物模型纤毛受体。我们检验了以下假设:在与这些 GPCR 功能相关的生理条件下,纤毛会发生动态定位。这两种受体都与摄食行为有关,而 MCHR1 还与睡眠和奖励有关。纤毛的分析采用计算机辅助方法,可实现无偏和高通量分析。我们测量了纤毛频率、长度和受体占有率。我们观察到,在不同条件下,对于一种受体而不是另一种受体,以及在特定大脑区域,纤毛长度、受体占有率和纤毛频率会发生变化。这些数据表明,GPCR 的动态纤毛定位取决于单个受体的特性以及它们表达的细胞。更好地了解纤毛 GPCR 的亚细胞定位动态可以揭示调节摄食等行为的未知分子机制。
Lophiotrema 属是 Lophiotremataceae 科中的一种子囊菌属真菌。该属的成员作为内生菌已被从多种宿主植物以及陆地和海洋生境中的植物碎片中分离出来,它们被认为在这些环境中起着腐生菌的作用。Lophiotrema sp. F6932 是从新加坡乌敏岛的白色红树林 (Avicennia officinalis) 中分离出来的。该真菌的粗提取物表现出强效抗菌活性,通过生物测定指导的生物活性成分分离和结构解析,分离出了 palmarumycin C 8 和一种新的类似物 palmarumycin CP 30 。全基因组测序分析鉴定出一种假定的 1 型迭代 PKS (iPKS),该 PKS 推测参与了 palmarumycin 的生物合成。为了验证帕尔马霉素 (PAL) 基因簇参与这些化合物的生物合成,我们采用核糖核蛋白 (RNP) 介导的 CRISPR-Cas9 诱导 PAL 中酮合酶 (KS) 结构域的靶向缺失。KS 结构域上游和下游的双链断裂 (DSB) 之后进行同源定向修复 (HDR),其中潮霉素抗性盒两侧有 50 bp 的同源性。与野生型菌株相比,所得的缺失突变体表现出完全不同的表型,因为它们具有不同的菌落形态并且不再能够产生帕尔马霉素或黑色素。因此,这项研究证实了 PAL 参与了帕尔马霉素的生物合成,并为实施类似方法表征这种研究不足的真菌菌株中其他感兴趣的基因簇铺平了道路。