使用非靶向常规育种方法几乎不可能实现。为了展示加快 NGT 过程的新方法,刘等人 (2024) 使用病毒传递 CRISPR/Cas9 分子剪刀发挥作用所需的向导 RNA。他们在蛋白质编码基因和非编码 DNA 调控元件中都实现了多核苷酸缺失。番茄中 miRNA164 的保守遗传区域是目标基因之一。研究人员观察到,在该基因座发生大量缺失的植物中出现了以前未表征的表型,在这种情况下,这对植物不利。有几篇关于针对 miRNA 的 NGT 应用的出版物,显示了广泛的预期和非预期效果(Hong 等人,2021 年;Lin 等人,2022 年;Peng 等人,2019 年;Zhang 等人,2020 年;Zhao 等人,2017 年;Zhou 等人,2022 年)。此外,AI 还用于识别相关目标(Daniel Thomas 等人,2024 年;Kuang 等人,2023 年)。由于敲除 miRNA 基因功能所需的微小改变,因此所产生的植物很可能在计划中的新法规框架内逃避强制性风险评估(见下文)。
主要关键词