Loading...
机构名称:
¥ 1.0

Aerobotix Technosolutions,印度马哈拉施特拉邦科尔哈普尔 摘要 EMG 传感器已广泛应用于辅助技术、生物医学和人机界面。本文讨论了具有紧凑设计和信号采集的 EMG 传感器的开发。该系统捕获、过滤和放大肌肉信号,以使其可用于假肢、康复和诊断等许多领域。 关键词:EMG 信号、辅助设备、信号放大、信号处理、肌电图、仿生手臂、康复、生物医学、脑机接口、可穿戴技术、神经肌肉功能、假肢设备、电信号、神经康复、外骨骼。 I. 介绍 肌电图传感器捕捉肌肉收缩引起的电活动,这使得它能够应用于仿生手臂、康复、生物医学诊断、人机界面等广泛的领域。使用 EMG 传感器,我们可以记录肌肉产生的电活动,这有助于物理治疗师分析肌肉活动并识别薄弱的肌肉。因此,可以使用该数据为患者创建康复程序。它用于外骨骼和仿生手臂,为身体残疾的患者提供运动支持。它们有助于通过适应用户独特的肌肉模式和力量来定制辅助设备。传感器越紧凑,用户体验就越好。这些传感器将监测肌肉健康并防止慢性病患者的肌肉萎缩。据世界卫生组织称,全世界约有 3000 万人需要假肢或其他辅助设备。肌电图传感器在改善辅助技术领域的生活质量方面发挥着重要作用。机器学习的技术进步将提高传感器的效率。它将根据用户的数据进行学习,并能够在仿生手臂的情况下提供快速的实时反馈。本文介绍了一种紧凑型肌电图传感器电路的开发和实现。二、文献综述在 Crea 等人 (2019) 进行的研究中,肌电图信号允许用户使用肌肉收缩来控制假肢。根据 Liao 等人的研究,肌电图信号允许用户使用肌肉收缩来控制假肢。 (2020),研究使用带有机器学习算法的 EMG 传感器,这将实现精确控制,减少反馈时间和自然运动。根据 Basmajian 等人 (2017) 的说法,功能性电刺激 (FES) 对于脊髓损伤患者的康复 EMG 传感器起着至关重要的作用。刺激特定肌肉有助于患者恢复运动控制。

基于肌电图的仿生信号处理...

基于肌电图的仿生信号处理...PDF文件第1页

基于肌电图的仿生信号处理...PDF文件第2页

基于肌电图的仿生信号处理...PDF文件第3页

基于肌电图的仿生信号处理...PDF文件第4页

基于肌电图的仿生信号处理...PDF文件第5页