enough 及其同事 [2] 发现 LiCoO 2 正极可以在 3–4.3 V 相对于 Li + /Li 0 的范围内提取大量的 Li +。1982 年,Yazami 和 Touzain 报道了以石墨为固体电解质时 Li + 离子的电化学活性,这成为了商业化锂离子电池 (LIB) 的重要基础。 [3] 1985 年,Yoshino 发明了一种由 LiCoO 2 正极和碳质负极组成的新电池,它显示出合理的可逆容量和显著增强的循环性能。 [4] 随后,索尼于 1991 年将 LIB 商业化;与镍镉和镍氢电池相比,它们表现出更高的质量能量密度和体积能量密度。 [5] 由于其高可逆容量和可观的日历寿命,LIB 已广泛应用于消费产品(如相机和笔记本电脑)和纯/混合动力 (H) 电动汽车 (EV)。根据组成 LIB 的元素价格表,钴(15.54 美元)比镍、锰和铝贵,后三种元素的价格分别为 5.90 美元、1.06 美元和 0.77 美元 LB −1(2020 年 2 月 6 日的实时价格,http://www.infomine. com/investment/metal-prices/)。这促使人们寻找低成本、高容量的替代正极材料,以推广采用 LIB 作为电源的 EV/HEV(图 1 a)。[6] 用层状结构中的其他元素取代钴可能会获得优异的电池性能。例如,富镍的 Li[Ni1−x−yCoxMny]O2 具有高容量(200–250mAhg−1)和高电压操作(≈3.8V vs Li0/Li+)以及更好的化学稳定性,由于 Ni3+/4+(eg)氧化还原能与 Co3+/4+(t2g)和 Mn3+/4+(t2g)带上方的 O2−2p 带顶部没有明显的重叠,所以氧损失更少。 [7,8] 然而,由于 Li+ 和 Ni 2+ 的离子半径相似(0.76 Å),合成化学计量的 LiNiO 2 很困难,即在合成过程中,Ni 2+ 很容易占据锂板中的 3b 锂位并形成[Li 1-xNix]3a[Ni1-x]3b[O2]6c。锂层中的 Ni 2+ 不仅阻碍了 Li+ 的顺利扩散,而且导致不可逆容量和较差的循环寿命。[9] 通常,LiNiO 2 在深度脱锂后表现出从第一个六方到单斜(H1 到 M),单斜到第二个六方(M 到 H2),最后从第二个六方到第三个六方(H2 到 H3)相的渐进相变,[10] 这限制了 LiNiO 2 的制备。
主要关键词