群体成像显著增加了功能成像数据集的大小,为个体间差异的神经基础提供了新的见解。分析这些大数据带来了新的可扩展性挑战,包括计算和统计方面的挑战。因此,大脑图像通常总结为几个信号,例如使用大脑图谱或功能模式减少体素级测量值。选择相应的大脑网络非常重要,因为大多数数据分析都是从这些减少的信号开始的。我们贡献了精细解析的功能模式图谱,包含 64 到 1024 个网络。这些功能模式词典 (DiFuMo) 是在数百万个 fMRI 功能性大脑体积上训练的,总大小为 2.4TB,涵盖了 27 项研究和许多研究小组。我们展示了在我们的细粒度图谱中提取精简信号对许多经典功能数据分析流程的好处:从 12,334 个大脑反应中解码刺激、跨会话和个体的 fMRI 标准 GLM 分析、提取 2,500 个个体的静息状态功能连接组生物标志物、对超过 15,000 个统计图进行数据压缩和荟萃分析。在每一个分析场景中,我们都将我们的功能图谱与其他流行参考资料的性能进行比较,并与简单的体素级分析进行比较。结果强调了使用高维“软”功能图谱来表示和分析大脑活动同时捕捉其功能梯度的重要性。高维模式的分析实现了与体素级类似的统计性能,但计算成本大大降低,可解释性更高。除了提供它们之外,我们还根据这些模式的解剖位置为其提供有意义的名称。这将有助于报告结果。
主要关键词