Loading...
机构名称:
¥ 2.0

3 此关系可从单方程能量平衡模型中推导出来。在离散时间中,能量平衡模型为 Δ T t = - λT t -1 + bRF t ,其中 T t 为温度,RF t 为辐射强迫,t 以年为单位,b 为单位调整。这可解得 T t = b (1 – (1- λ )L) -1 RF t = ( b /λ) F t + c *(L)Δ RF t ,其中 c *(L) 是 Beveridge-Nelson 分解的可求和残差滞后多项式。如果 RF t 可以很好地近似为 1 阶积分,则此质量平衡方程意味着 T t 和 RF t 是 (1,1) 阶协整的,协整系数为 b / λ 。如果 RF t 是持续性的但不一定是 1 阶协整的,那么 T t 将继承 RF t 的持续性,并与 RF t 共享共同的长期趋势。在这里,我们遵循 Kaufmann、Kauppi 和 Stock (2006) 的观点,采用 1 阶协整模型。有关此处概述的能量平衡模型推导的更多信息,请参阅 Kaufmann 等人 (2013) 和 Pretis (2019)。

气候变化、气候政策与经济增长

气候变化、气候政策与经济增长PDF文件第1页

气候变化、气候政策与经济增长PDF文件第2页

气候变化、气候政策与经济增长PDF文件第3页

气候变化、气候政策与经济增长PDF文件第4页

气候变化、气候政策与经济增长PDF文件第5页