Loading...
机构名称:
¥ 1.0

摘要 — 精神分裂症严重影响生活质量。迄今为止,简单(例如线性判别分析)和复杂(例如深度神经网络)机器学习方法都已用于基于功能连接特征识别精神分裂症。现有的简单方法需要两个独立的步骤(即特征提取和分类)来实现识别,这使得无法同时调整以获得最佳特征提取和分类器训练。复杂方法集成了两个步骤,可以同时调整以实现最佳性能,但这些方法需要大量的数据进行模型训练。为了克服上述缺点,我们提出了一种多核胶囊网络(MKCapsnet),它是通过考虑大脑解剖结构而开发的。将内核设置为与大脑解剖结构的分区大小相匹配,以捕捉不同尺度的区域间连接。受深度学习中广泛使用的 dropout 策略的启发,我们在胶囊层中开发了胶囊 dropout 以防止模型过度拟合。比较结果表明,所提出的方法优于最先进的方法。此外,我们比较了使用不同参数的性能,并说明了路由过程以揭示所提出方法的特点。MKCapsnet 在精神分裂症识别方面很有前景。我们的研究首先利用胶囊神经网络分析磁共振成像 (MRI) 的功能连接,并提出了一种考虑大脑解剖分区的新型多核胶囊结构,这可能是揭示大脑机制的一种新方法。此外,我们在参数设置中提供了有用的信息,这对进一步使用胶囊网络进行其他神经生理信号分类的研究很有帮助。

用于精神分裂症识别的多核胶囊网络

用于精神分裂症识别的多核胶囊网络PDF文件第1页

用于精神分裂症识别的多核胶囊网络PDF文件第2页

用于精神分裂症识别的多核胶囊网络PDF文件第3页

用于精神分裂症识别的多核胶囊网络PDF文件第4页

用于精神分裂症识别的多核胶囊网络PDF文件第5页

相关文件推荐

2022 年
¥2.0