本文介绍了一种便捷快速的低成本、弹簧式干式脑电图 (EEG) 电极与研究级传感器盖的集成,以确保电极根据 5% 系统定位。在心理学和神经科学以外的领域,如工程学,对大脑活动的测量越来越感兴趣。人为错误通常是由于注意力不集中、无法完全理解后果或界面设计不足而发生的。需要有效的设计解决方案来结合和识别人类行为和各种类型的反应,以减轻人为错误。生理传感器可用于更好地评估哪种设计以最佳方式满足用户需求。几十年来,脑活动传感器已在脑机接口 (BCI) 社区中得到应用。EEG 是一种非常流行的模式,因为它具有非侵入性和高时间分辨率。先前的研究表明,在预测和分类任务中使用多模态测量比单模态测量具有更高的实验结果性能。因此,我们希望将 EEG 与现有的实验装置相结合,其中包括功能性近红外光谱 (fNIRS)。通过快速原型在设计-构建-测试的循环中开发了一种集成。与目前可用的低成本设备相比,所提出的设置增加了可用的电极位置,并构成了一种实用的低成本方法,用于将 EEG 测量与其他大脑活动传感器(如 fNIRS)相结合。通过两个任务对信号质量进行了概念验证测试,这两个任务显示 EEG 信号中容易检测到的变化:闭眼和眨眼。闭眼会增加 alpha 范围内的峰值幅度,一旦睁开眼睛,这种效果就会逆转。故意在特定间隔内眨眼会在信号中产生特征性眼电图 (EOG) 伪影。两种反应都与文献一致。所提出的解决方案旨在降低将 EEG 作为现有实验设置中的附加模式的障碍,从而提高实验结果的性能。关键词:EEG、fNIRS、原型设计、以人为本的设计、实验
主要关键词