结果:通过 Ovid MEDLINE 共查明 72 篇原创文章和 5 篇综述,其中 19 篇(26.4%)将人工智能技术与传统药物流行病学方法的性能进行了比较。总共对 44 篇文章进行了比较,旨在 1)根据患者特征预测所需剂量(31.8%),2)预测药物治疗后的临床反应(29.5%),3)预测药物不良反应的发生/严重程度(20.5%),4)预测倾向评分(9.1%),5)识别更有可能出现药物无效风险的亚群(4.5%),6)预测药物消耗量(2.3%),7)预测药物引起的住院时间(2.3%)。在 44 项比较中的 22 项(50.0%)中,人工智能的表现优于传统药物流行病学技术。在大多数比较中,随机森林(11 项比较中的 7 项;63.6%)和人工神经网络(10 项比较中的 6 项;60.0%)的表现优于传统药物流行病学方法。