摘要。建模并与用户交互的 AI 系统可以随时间更新其模型,以反映新信息和环境变化。虽然这些更新可能会提高 AI 系统的整体性能,但实际上可能会损害单个用户的性能。先前的研究研究了更新后系统准确性的提高与更新后系统与先前用户体验的兼容性之间的权衡。模型越被迫与先前版本兼容,其准确性损失就越大。在本文中,我们表明,通过针对特定用户个性化损失函数,在某些情况下可以改善这些用户的兼容性-准确性权衡(在牺牲较少准确性的同时提高模型的兼容性)。我们提出的实验结果表明,这种方法平均而言提供了中等程度的改进(约 20%),但对于某些用户而言,改进幅度很大(高达 300%)。