1. 解决基于人工智能的基本问题。2. 定义人工智能的概念。3. 将人工智能技术应用于实际问题以开发智能系统。4. 在实施智能系统时,从一系列技术中进行适当选择。第一单元简介:人工智能问题概述,人工智能问题为 NP、NP 完全和 NP 难题。强与弱、整洁与邋遢、符号与亚符号、基于知识和数据驱动的人工智能。第二单元搜索策略:问题空间(状态、目标和运算符)、通过搜索解决问题、启发式和知情搜索、最小-最大搜索、Alpha-beta 剪枝。约束满足(回溯和局部搜索方法)。第三单元知识表示和推理:命题和谓词逻辑、解析和定理证明、时间和空间推理。概率推理、贝叶斯定理。全序和偏序规划。目标堆栈规划、非线性规划、分层规划。单元 IV 学习:从示例中学习、通过建议学习、基于解释的学习、解决问题中的学习、分类、归纳学习、朴素贝叶斯分类器、决策树。自然语言处理:语言模型、n-gram、向量空间模型、词袋、文本分类。信息检索。单元 V 代理:代理的定义、代理架构(例如,反应式、分层式、认知式)、多代理系统 - 协作代理、竞争代理、群体系统和生物启发模型。智能系统:表示和使用领域知识、专家系统外壳、解释、知识获取。关键应用领域:专家系统、决策支持系统、语音和视觉、自然语言处理、信息检索、语义网。教科书:
主要关键词