Loading...
机构名称:
¥ 2.0

摘要:随着量子计算机的不断发展,各种量子人工智能技术的研究正在进行中。与传统计算机上的深度学习相比,量子人工智能可以提高准确性和内存使用率方面的性能。在这项工作中,我们提出了一种攻击技术,该技术通过将量子人工智能应用于密码分析,通过学习密码算法中的模式来恢复密钥。密码分析是在当前实际可用的量子计算机环境中进行的,据我们所知,这是世界上第一项研究。结果,我们减少了 70 个时期,并将参数减少了 19.6%。此外,尽管使用了较少的时期和参数,但仍实现了更高的平均 BAP(位准确率)。对于相同的时期,使用量子神经网络的方法以更少的参数实现了 2.8% 更高的 BAP。在我们的方法中,使用量子神经网络获得了准确性和内存使用方面的量子优势。预计如果未来开发出更大规模的稳定量子计算机,本文提出的密码分析将得到更好的利用。

量子人工智能密码分析

量子人工智能密码分析PDF文件第1页

量子人工智能密码分析PDF文件第2页

量子人工智能密码分析PDF文件第3页

量子人工智能密码分析PDF文件第4页

量子人工智能密码分析PDF文件第5页

相关文件推荐

2024 年
¥1.0
2020 年
¥1.0
2020 年
¥1.0
2020 年
¥1.0
2023 年
¥3.0
2024 年
¥4.0
2023 年
¥1.0
2013 年
¥3.0
2024 年
¥1.0
2023 年
¥5.0
2023 年
¥2.0
2020 年
¥9.0
2024 年
¥4.0
2022 年
¥3.0
2021 年
¥6.0
2023 年
¥1.0
2024 年
¥3.0
2024 年
¥1.0