从自然科学到社会科学,发现数据中隐藏的规律是许多领域的核心挑战。然而,这项任务在历史上依赖于人类的直觉和经验,在许多领域,包括心理学。因此,使用人工智能 (AI) 发现规律有两个显著的优势。首先,它可以发现人类无法发现的规律。其次,它将有助于构建更准确的理论。一种名为 AI-Feynman 的人工智能在一个非常不同的领域发布,表现令人印象深刻。虽然 AI-Feynman 最初是为发现物理学规律而设计的,但它在心理学中也能很好地发挥作用。本研究旨在通过测试 AI-Feynman 是否可以发现双曲折现模型作为折现函数,来检验它是否可以成为跨期选择实验的一种新的数据分析方法。为了实现这些目标,进行了一项跨期选择实验,并将数据输入 AI-Feynman。结果,AI-Feynman 提出了七个折现函数候选。其中一个候选模型是双曲折现模型,目前认为该模型最为准确。三种均方根误差函数均优于双曲折现模型。此外,三种候选模型中有一种比标准双曲折现函数更“双曲”。这些结果表明了两点。一是 AI-Feynman 可以成为跨期选择实验的一种新数据分析方法。二是 AI-Feynman 可以发现人类无法发现的折现函数。
主要关键词