Loading...
机构名称:
¥ 1.0

神经网络回归已有 10 年。在这一周年纪念日的推动下,我们对人工智能 (AI) 采取了整体视角。认知任务的监督学习得到了有效解决——前提是我们拥有足够高质量的标记数据。然而,深度神经网络模型不易解释,因此黑盒和白盒建模之间的争论成为了焦点。注意力网络、自我监督学习、生成建模和图神经网络的兴起拓宽了人工智能的应用空间。深度学习也推动了强化学习作为自主决策系统核心构建块的回归。新人工智能技术可能带来的危害引发了透明度、公平性和问责制等社会技术问题。控制人才、计算资源以及最重要的数据的大型科技公司在人工智能领域的主导地位可能会导致极端的人工智能鸿沟。尽管最近人工智能驱动的对话代理取得了戏剧性和出人意料的成功,但自动驾驶汽车等备受瞩目的旗舰项目的进展仍然难以捉摸。必须注意缓和围绕该领域的言论,并使工程进展与科学原理保持一致。

人工智能的 360° 视角 - ePrints Soton

人工智能的 360° 视角 - ePrints SotonPDF文件第1页

人工智能的 360° 视角 - ePrints SotonPDF文件第2页

人工智能的 360° 视角 - ePrints SotonPDF文件第3页

人工智能的 360° 视角 - ePrints SotonPDF文件第4页

人工智能的 360° 视角 - ePrints SotonPDF文件第5页

相关文件推荐

2021 年
¥1.0
2021 年
¥1.0
2022 年
¥8.0
2022 年
¥1.0
2022 年
¥1.0
2021 年
¥1.0
2022 年
¥1.0
2022 年
¥5.0
2022 年
¥1.0
2022 年
¥1.0