Loading...
机构名称:
¥ 2.0

人工智能的发展提出了一个关于人类智能的基本问题:人类推理是通过应用从丰富的先前经验中获得的任务特定知识来最好地模拟的,还是基于领域通用的心理表征操纵和比较?我们针对视觉类比推理的情况来解决这个问题。使用熟悉的三维物体(汽车及其零件)的真实图像,我们系统地操纵视觉类比问题中的视点、零件关系和实体属性。我们将人类的表现与两种最近的深度学习模型(孪生网络和关系网络)的表现进行了比较,这两种模型直接经过训练来解决这些问题并将其任务特定知识应用于类比推理。我们还通过将领域通用的映射程序应用于汽车及其零部件的学习表征,开发了一个使用基于零件的比较 (PCM) 的新模型。在四项类比(实验 1)和开放式类比(实验 2)中,领域通用的 PCM 模型(而非特定任务的深度学习模型)在关键方面产生了与人类推理者相似的性能。这些发现证明,通过将大数据的深度学习应用于特定类型的类比问题,不太可能实现类似人类的类比推理。相反,人类确实(并且机器可能)通过学习对多个任务有用的结构信息进行编码的表示,再加上关系相似性的高效计算来实现类比推理。

视觉类比的两种计算方法:任务‐......

视觉类比的两种计算方法:任务‐......PDF文件第1页

视觉类比的两种计算方法:任务‐......PDF文件第2页

视觉类比的两种计算方法:任务‐......PDF文件第3页

视觉类比的两种计算方法:任务‐......PDF文件第4页

视觉类比的两种计算方法:任务‐......PDF文件第5页

相关文件推荐

2025 年
¥1.0
2025 年
¥1.0
2024 年
¥1.0
2024 年
¥3.0
2024 年
¥2.0
2020 年
¥4.0