Loading...
机构名称:
¥ 1.0

在足够大的对象分类数据集上进行训练时,特定的人工神经网络模型可以合理匹配核心对象识别 (COR) 行为和灵长类视觉腹侧流 (VVS) 中的潜在神经反应模式。机器学习的最新发现表明,在更大的数据集上训练更大的模型并投入更多的计算预算可以提高任务性能,但目前尚不清楚规模如何影响大脑对齐。我们在此研究了灵长类 VVS 建模的缩放定律,这些定律涉及以受控方式训练的 300 多个模型中数据集和模型大小的计算最优分配。为了评估模型的大脑对齐,我们使用了一组涵盖整个 VVS 和 COR 行为的基准。我们发现,虽然增加模型参数的数量最初会改善大脑对齐,但更大的模型最终会导致收益递减。增加数据集大小可以从经验上持续改善对齐,但我们推断,这里的规模对于非常大的数据集也会趋于平稳。将我们对模型和数据大小的最佳计算预算分配与缩放定律相结合,我们预测单凭规模不会导致大脑与当前架构和数据集的一致性取得实质性进展。

灵长类视觉腹侧流任务优化模型的缩放定律

灵长类视觉腹侧流任务优化模型的缩放定律PDF文件第1页

灵长类视觉腹侧流任务优化模型的缩放定律PDF文件第2页

灵长类视觉腹侧流任务优化模型的缩放定律PDF文件第3页

灵长类视觉腹侧流任务优化模型的缩放定律PDF文件第4页