摘要 — 本文提出了一种基于动态偏置长短期记忆 (DB-LSTM) 网络的心电图 (ECG) 信号分类模型。与传统 LSTM 网络相比,DB-LSTM 引入了一组参数 C,用于保存单元格的先前时间步长单元门状态。因此,可以保留更多特征信息,并且分类任务所需的网络规模更小。使用 MIT-BIH ECG 数据集进行的全面模拟表明,该模型可以在更短的时间窗口、更快的训练收敛下执行 ECG 特征分类,同时以更低的权重分辨率实现相当的训练和分类精度。与其他最先进的 ECG 分析算法相比,该模型仅需要 4 层,当权重从 FP32 截断为 INT4 时,准确率达到 96.74%,准确率仅下降 2.4%。在 Xilinx Artix-7 FPGA 上实现,所提出的设计估计仅消耗 40μW 动态功率,这对于资源受限的边缘设备来说是一个有希望的候选方案。
主要关键词