与传统计算机 [1] 相比,量子计算 (QC) 在特定问题上具有显著的计算优势。尽管目前量子设备存在噪声和缺陷等局限性,但人们仍在做出巨大努力以实现量子优势。其中一个突出的关注领域是量子机器学习 (QML),它利用量子计算原理来增强机器学习任务。大多数 QML 算法依赖于量子-经典混合范式,该范式将计算任务分为两个部分:量子计算机处理受益于量子计算的部分,而传统计算机处理它们擅长的部分。变分量子算法 (VQA) [2] 构成了当前量子机器学习 (QML) 方法的基础。QML 已在各种机器学习任务中取得成功,包括分类 [3]–[6]、顺序学习 [7]、[8]、自然语言处理 [9]–[12] 和强化学习 [13]–[19]。在这些领域中,量子强化学习 (QRL) 是一个新兴领域,研究人员正在探索应用量子计算原理来提高强化学习代理的性能。本文介绍了 QRL 的概念和最新发展。