Loading...
机构名称:
¥ 1.0

摘要:中风诊断是一个时间紧迫的过程,需要快速准确地识别以确保及时治疗。本研究提出了一种基于机器学习的诊断模型,使用神经图像识别中风。早期识别和及时干预对于改善中风患者的预后至关重要,但目前的诊断技术,如 CT 和 MRI 扫描,通常需要耗时的专家分析。这些延迟可能会限制治疗的效果,特别是在分秒必争的急性病例中。问题在于需要更快、更可靠的诊断工具,这些工具可以高精度地分析神经影像数据,并尽量减少人工干预。机器学习,特别是深度学习,通过自动化中风检测过程,为解决这一差距提供了一种有希望的解决方案。我们采用了一种综合方法,利用 Inceptionv3、MobileNet、卷积神经网络 (CNN) 算法来分析神经影像并预测中风的发生。本研究提出了一种基于机器学习的诊断模型,使用神经影像识别中风,利用卷积神经网络 (CNN) 的强大功能,采用 Inception V3 和 MobileNet 架构。 Inception V3 以其通过深度卷积层捕获复杂图像特征的能力而闻名,而 MobileNet 则针对效率和速度进行了优化,它们被用于处理大量脑部扫描数据集。该模型在这些神经影像数据集上进行训练,以区分健康的脑组织和受中风影响的脑组织。这两种架构的结合既可以进行详细分析,又可以快速处理,使该模型能够适应临床环境。结果表明,该模型在中风识别方面取得了很高的准确率,证明了其有潜力帮助医疗保健专业人员更快、更准确地诊断中风。通过将这种机器学习模型整合到现有的诊断工作流程中,它可以显著缩短诊断时间,实现更早的治疗,并最终改善患者的治疗效果。我们的模型有可能改善患者的治疗效果并减轻中风的经济负担。通过利用这些先进的机器学习技术的力量,该模型旨在提高中风诊断的效率和准确性,与传统方法相比。关键词:中风识别、机器学习、神经影像、诊断模型、Inceptionv3、MobileNet、卷积神经网络 (CNN)

基于神经影像的中风识别

基于神经影像的中风识别PDF文件第1页

基于神经影像的中风识别PDF文件第2页

基于神经影像的中风识别PDF文件第3页

基于神经影像的中风识别PDF文件第4页

基于神经影像的中风识别PDF文件第5页

相关文件推荐

2020 年
¥1.0
2020 年
¥1.0
2022 年
¥1.0
2022 年
¥1.0
2025 年
¥1.0
2022 年
¥1.0
2024 年
¥1.0
2025 年
¥1.0
2024 年
¥1.0
2018 年
¥1.0
2024 年
¥5.0
2022 年
¥1.0
2020 年
¥3.0
2020 年
¥1.0