Loading...
机构名称:
¥ 1.0

(h)但是,该国对水泥的需求仍然很强劲 - 受私人和公共基础设施项目的驱动。同样,该公司在市场上拥有强大,知名,高质量和公认的品牌,并且由于随之而来的流动性限制,通常无法满足需求。同样,用自己的熟料制成的熟料将操作模型的变化回到集成模型中 - 由有效的运营窑炉锚定,将使成本降至足以获得可持续的利润并偏离廉价进口的竞争。这将与其他重组计划一起 - 在财务和组织上,将导致企业恢复。,该业务已经进行了,今年早些时候,一项员工合理化练习的成本为70万美元,导致每月运营成本显着降低。

按语句:

按语句:PDF文件第1页

按语句:PDF文件第2页

按语句:PDF文件第3页

相关文件推荐

2023 年
¥1.0
2025 年
¥1.0
2025 年
¥1.0
2023 年
¥1.0
2024 年
¥1.0
2025 年
¥1.0
2024 年
¥11.0
2023 年
¥6.0
2023 年
¥11.0
2025 年
¥1.0
2020 年
¥2.0
2024 年

CAIRS:用于数字心理健康的因果人工智能推荐系统 Mathew Varidel,博士 a;Victor An a,Ian B. Hickie a,医学博士,Sally Cripps b,c,博士,Roman Marchant b,c,博士,Jan Scott d,博士,Jacob J. Crouse a,博士,Adam Poulsen a,博士,Bridianne O'Dea e,博士,Frank Iorfino a,博士 a 悉尼大学大脑与思维中心,澳大利亚新南威尔士州。 b 悉尼科技大学人类技术研究所,澳大利亚新南威尔士州。 c 悉尼科技大学数学与物理科学学院,澳大利亚新南威尔士州悉尼。 d 纽卡斯尔大学神经科学研究所学术精神病学,英国纽卡斯尔。 e 弗林德斯大学心理健康与福祉研究所,弗林德斯大学,南澳大利亚阿德莱德,澳大利亚。 * 通讯作者:Mathew Varidel,5 楼,1 King Street,Newtown,新南威尔士州 2042,mathew.varidel@sydney.edu.au 摘要 数字心理健康工具有望增强和扩大有需要的人获得医疗服务的机会。一些工具向个人提供干预建议,通常使用简单的静态规则系统(例如,if-else 语句)或结合预测性人工智能。然而,干预建议需要基于对不同干预措施下未来结果的比较来做出决定,这需要考虑因果关系。在这里,我们开发了 CAIRS,这是一个因果人工智能推荐系统,它使用个人的当前表现和领域之间学习到的动态来提供个性化的干预建议,以识别和排名对未来结果影响最大的干预目标。我们的方法应用于从数字心理健康工具收集的两个时间点(从基线开始 1 周 - 6 个月)的多个心理健康和相关领域的纵向数据。在我们的例子中,心理困扰被发现是影响多个领域(例如个人功能、社会联系)的关键影响领域,因此在多个领域不健康的复杂情况下,心理困扰通常是首选目标。我们的方法广泛适用于因果关系很重要的推荐环境,并且该框架可以纳入实时应用程序中以增强数字心理健康工具。关键词:因果关系;人工智能;决策理论;幸福感;心理困扰;功能;睡眠;社会支持

¥1.0