超声(US)图像的自动分割可以帮助筛查,诊断和评估预后。但是,由于以下困难,准确的美国细分是一个挑战。首先,美国图像通常患有低信噪比(SNR)(1)和不均匀强度分布(2)。第二,由于美国探针与身体表面之间的接触不足或存在干扰扫描的组织界面的解剖结构,阴影是常见的发生(3)。这些阴影区域具有低强度或深色像素,通常是解剖区域和病变不可或缺的(4)。如图1所示,在美国图像中经常观察到阴影伪像和模棱两可的病变边界,对准确的美国分割提出了重大挑战。最近,已经提出了元AI的任何模型(SAM)(5),作为自然图像分割的可促进基础模型,并最少。SAM是一种深度学习模型(基于变压器),已接受大量图像和面具的培训 - 超过1