摘要 - 当两种或多种混合使用的药物会引起不良副作用时,即使使用药物单独使用不会造成伤害时,多药的问题也会引起不利的副作用。药物相互作用(DDIS)是这些反应的主要原因,导致发病率和死亡率增加。由于有害DDI的潜力呈指数增长,因此药物相互作用的预测对于患者的安全和有效的医疗保健管理越来越重要。在本文中,我们开发了Chembertaddi框架,该框架有效地结合了临床域数据,以单副作用特征表示,其富集化学分子表示,该化学分子表示源自Chemberta-77m-MLM,这是一个基于变压器的LAN- lan- gage模型。与五种最先进的方法相比,在基准数据集上进行的实验表现出色:decagon,deepwalk,dedicom,nnps和recrecal。评估表明,Chembertaddi的F1得分为0.94,AUROC为0.97,表现优于基线体系结构,并推广到新的引入的药物化合物。索引术语 - 转化,自然语言处理,分子表示学习,药物 - 药物相互作用,多药,Chemberta,神经网络,深度学习,注意机制,生物信息学
主要关键词