量子机器学习 (QML) 是一个将量子计算与机器学习相结合的有前途的领域。变分量子电路(其中电路参数是通过经典方式学习的)已广泛应用于 QML 的许多近期应用中。这是一个混合量子-经典框架的实例,其中同时存在经典和量子组件。然而,将这些技术应用于涉及海量数据的应用是一项具有挑战性的任务。克服这一问题的一种方法是使用最近引入的修饰量子电路的经典量子迁移学习概念,其中底层神经架构是经过经典预训练的,但在最后一步(决策层),使用量子电路,然后进行量子测量和后处理以高精度对图像进行分类。在本文中,我们将混合经典量子迁移学习应用于另一项海量数据处理任务,即自然语言处理 (NLP)。我们展示了如何使用经典量子迁移学习对短文本(例如 SMS)进行(二进制)分类,该学习最初仅应用于图像处理。我们的量子网络由 Transformers (BERT) 模型中的双向编码器表示预先训练,其变分量子电路经过微调以用于文本处理。我们使用接收者操作特性 (ROC) 曲线评估了我们的混合神经架构的性能,该曲线通常用于评估分类问题。结果表明精度高,损失函数低。据我们所知,我们的工作是量子迁移学习在 NLP 领域的首次应用。最后,与使用学习但方式不同于迁移学习的工具进行了比较
主要关键词