许多重要的算法都证明了量子计算机相对于传统计算机的优势,特别是用于因式分解的 Shor 算法 [1] 和用于搜索的 Grover 算法 [2]。这些算法基于协调简单量子门的离散操作。这类算法称为量子电路算法 [3]。在量子计算的另一个范例中,算法是通过设计汉密尔顿量来实现的。在这里,我们从一个易于准备的初始状态开始,让它动态演变,并在某个时刻进行适当的测量。(当然,汉密尔顿量应该对应于可能实现的电路。)基于汉密尔顿量的量子算法将编程问题转化为物理问题,这使得人们可以利用熟悉的物理过程来优化算法。1998 年提出了一种用于量子搜索的汉密尔顿方法 [4],并很快扩展到更一般的“绝热”算法 [5]。已经证明,每个量子电路算法都可以转换成量子绝热算法,其时间复杂度是多项式等价的(反之亦然)[6,7]。但连续方法可以提出不同的方法,比如这里讨论的非阿贝尔混合,或者我们将在其他地方描述的共振[8]。这里我们提出了一种针对独立集问题的有效量子汉密尔顿算法(见图1)。任何图都有平凡的独立集:空集和只有一个顶点的集。我们的目标是找到非平凡的独立集,有两个或理想情况下更多顶点。独立集问题可以用全否定2可满足性(2-SAT)问题来重新表述,反之亦然。基于此
主要关键词