摘要。了解某些大脑区域与特定神经系统疾病或认知刺激的关系是神经成像研究的重要领域。我们提出了Braingnn,即图形神经网络(GNN)框架,以分析功能磁共振图像(fMRI)并发现神经生物标志物。考虑到大脑图的特殊特性,我们设计了利用fMRI的拓扑和功能信息的新型Roi Aware图(RA-GCONV)层。以医学图像分析需要透明度的启发,我们的Braingnn包含ROI选择池层(R-池),突出显示了显着的ROI(图中的节点),因此我们可以推断哪些ROI对预测很重要。此外,我们提出了正则化项 - 单位损失,TOPK PORING(TPK)损失和组水平一致性(GLC)损失 - 在汇总结果上鼓励有理由ROI选择,并提供灵活性,以保留个人或组级别的模式。我们将BRAINGNN框架应用于两个独立fMRI数据集:自闭症谱障碍(ASD)fMRI数据集和人类Connectome Project(HCP)900主题释放。我们投资超参数的不同选择,并表明Braingnn在四个不同的评估指标方面优于替代fMRI图像分析方法。获得的社区聚类和显着的ROI检测结果表明,与ASD和特定任务状态为HCP解码的ASD和特定任务状态的生物标志物的先前神经成像衍生的证据相应很高。
主要关键词