Loading...
机构名称:
¥ 1.0

摘要:运动意图检测对于应用于辅助机器人的人机接口的实施至关重要。在本文中,已经探索了用于创建上肢运动预测模型的多个机器学习技术,该模型通常取决于三个因素:从用户收集的信号(例如运动学或生理学),提取的特征和所选算法。我们探讨了从各种信号中提取的不同特征的使用,用于训练多种算法以预测肘部弯曲角轨迹。根据轨迹的平均速度和峰值振幅评估了预测的准确性,该轨迹足以完全定义IT。结果表明,仅使用生理信号时的预测准确性很低,但是,当包括运动信号时,它会大大改善。这表明运动学信号为预测肘部轨迹提供了可靠的信息来源。使用10种算法训练了不同的模型。正则化算法在所有情况下都表现良好,而当选择最重要的功能时,神经网络的性能更好。可以咨询本研究中提供的广泛分析,以帮助开发准确的上肢运动意图检测模型。

使用多... -Dr -ntu

使用多... -Dr -ntuPDF文件第1页

使用多... -Dr -ntuPDF文件第2页

使用多... -Dr -ntuPDF文件第3页

使用多... -Dr -ntuPDF文件第4页

使用多... -Dr -ntuPDF文件第5页

相关文件推荐

2024 年
¥1.0
2024 年
¥8.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥2.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2023 年
¥1.0
2024 年
¥2.0
1900 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2025 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
1900 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥5.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0