Loading...
机构名称:
¥ 1.0

摘要:D-Wave Systems,Inc。构建的量子退火器提供了一种计算NP硬性问题解决方案的方法,这些解决方案可以在ISING或二次无约束的二进制优化(QUBO)形式中表达。尽管此类解决方案通常具有很高的质量,但由于当前世代量子退火器的不完美,问题实例通常无法解决为最佳性。在这项贡献中,我们旨在了解导致问题实例硬度的某些因素,并使用机器学习模型来预测D-Wave 2000Q退火器的准确性来解决特定问题。我们专注于最大集团问题,这是一个经典的NP硬性问题,其中包括网络分析,生物信息学和计算化学中的重要应用。通过训练基本问题特征的机器学习分类模型,例如图中的边缘数量或退火参数,例如D-Wave的链链强度,我们能够按照其对解决方案硬度的贡献的顺序对某些特征进行对某些特征,并呈现一个简单的决策树,以预测问题是否可以解决至D-Wave 2000 Q.最佳。我们通过训练机器学习回归模型来扩展这些结果,该模型可以预测D-Wave发现的集团大小。

使用机器学习进行量子退火精度预测

使用机器学习进行量子退火精度预测PDF文件第1页

使用机器学习进行量子退火精度预测PDF文件第2页

使用机器学习进行量子退火精度预测PDF文件第3页

使用机器学习进行量子退火精度预测PDF文件第4页

使用机器学习进行量子退火精度预测PDF文件第5页

相关文件推荐