大脑的连通性是局部密集且全球稀疏的,形成了一个小世界图,这是各种物种进化中普遍存在的原理,为有效的信息路由提供了通用解决方案。但是,当前的人工神经网络电路架构并不能完全包含小世界的神经网络模型。在这里,我们介绍了神经形态的镶嵌:一种非冯·诺伊曼收缩期架构,采用分布式备忘录来进行内存计算和内存路由,有效地实现了用于尖峰神经网络(SNNS)的小世界图形拓扑。我们使用具有130 nm CMOS技术的集成的备忘录,设计,制造和实验证明了马赛克的构建块。我们表明,由于在连接性中执行局部性,马赛克的路由效率至少比其他SNN硬件平台高一个数量级。这是Mosaic在各种边缘基准中实现竞争精度的同时。Mosaic为基于分布式尖峰的计算和内存路由的边缘系统提供了可扩展的方法。
主要关键词