针对最新的粒子群优化算法,本文提出了一种改进的跨前模型,以提高心脏病预测的准确性,并基于粒子群优化(PSO)提供了一种新的算法想法。我们首先使用三个主流机器学习分类算法 - 决策树,随机森林和XGBoost,然后输出这三个模型的混淆矩阵。结果表明,随机森林模型在预测心脏病的分类方面具有最佳性能,精度为92.2%。然后,我们将基于PSO算法的变压器模型应用于分类实验的同一数据集。结果表明,该模型的分类精度高达96.5%,比随机森林高4.3%,这验证了PSO在优化变压器模型中的有效性。上述研究表明,PSO在心脏病预测中显着改善了变压器的性能。提高预测心脏病的能力是全球优先事项,对所有人类的益处。准确的预测可以增强公共卫生,优化医疗资源并降低医疗保健成本,从而导致更健康的社会。这一进步为更有效的健康管理铺平了道路,并为更健康,更具韧性的全球社区的基础提供了帮助。
主要关键词