神经形态计算将机器学习和人工智能等计算领域与尖端硬件开发和材料科学以及神经科学的理念相结合。在其最初的形式中,“神经形态”用于指代包含模拟组件并模仿生物神经活动的定制设备/芯片 [Mead1990]。如今,神经形态计算已扩展到包括各种软件和硬件组件,以及材料科学、神经科学和计算神经科学研究。为了适应该领域的扩展,我们提出以下定义来描述神经形态计算的现状:神经形态系统也倾向于强调时间交互;这些系统的运行往往是事件驱动的。神经形态系统的几个特性(包括事件驱动行为)允许低功耗实现,即使在数字系统中也是如此。神经形态系统的各种特性表明,社区必须在神经生理学家、计算神经科学家、生物学家、计算机科学家、设备工程师、电路设计师和材料科学家的意见下解决大量的设计选择。图:生物大脑的抽象层次以及它们可能实现的功能
主要关键词