摘要 神经影像学研究已经提供了证据,表明大量的冥想练习会改变人类大脑的功能和结构特性,例如大规模大脑区域的相互作用。然而,不同的冥想风格如何参与这些大规模大脑网络的调节仍不清楚。在这里,我们使用机器学习和 fMRI 功能连接,研究了集中注意力和开放监控冥想风格如何影响大规模大脑网络。具体来说,我们训练了一个分类器来预测两组受试者的冥想风格:专家上座部佛教僧侣和新手冥想者。我们表明,分类器只能区分专家组的冥想风格。此外,通过检查训练后的分类器,我们观察到前部显着性和默认模式网络与分类相关,这与它们在冥想中参与情绪和自我相关调节的理论一致。有趣的是,结果还强调了调节注意力和自我意识的关键区域与处理和整合体感信息相关区域之间的特定耦合的作用。最后,我们观察到左半球间连接在分类中的作用更大。总之,我们的研究支持了以下证据:大量的冥想练习会调节大规模的大脑网络,而不同的冥想风格会对有助于特定风格功能的连接产生不同的影响。