Loading...
机构名称:
¥ 1.0

摘要 — 最近的研究表明,记忆电容设备网络为储存器计算系统提供了低功耗的理想计算平台。随机、交叉或小世界幂律 (SWPL) 结构是储存器基底计算单个任务的常见拓扑结构。然而,神经学研究表明,与不同功能相关的皮层大脑区域互连形成富俱乐部结构。这种结构允许人类大脑同时执行多项活动。到目前为止,记忆电容储存器只能执行单一任务。在这里,我们首次提出了集群网络作为记忆电容储存器同时执行多项任务。我们的结果表明,在三个任务上,集群网络分别比交叉和 SWPL 网络高出 4.1 × 、5.2 × 和 1.7 × 倍:孤立口语数字、MNIST 和 CIFAR-10。与我们之前和已发表结果中的单任务网络相比,多任务集群网络可以实现类似的准确率,分别为 MNIST、孤立口语数字和 CIFAR-10 的 86%、94.4% 和 27.9%。我们的扩展模拟表明,输入信号幅度和集群间连接都会影响集群网络的准确性。选择信号幅度和集群间链接的最佳值是获得高分类准确率和低功耗的关键。我们的结果说明了记忆电容式大脑启发集群网络的前景及其同时解决多项任务的能力。这种新颖的计算架构有可能使边缘应用程序更高效,并允许无法重新配置的系统解决多项任务。

多任务记忆电容网络 - PDXScholar

多任务记忆电容网络 - PDXScholarPDF文件第1页

多任务记忆电容网络 - PDXScholarPDF文件第2页

多任务记忆电容网络 - PDXScholarPDF文件第3页

多任务记忆电容网络 - PDXScholarPDF文件第4页

多任务记忆电容网络 - PDXScholarPDF文件第5页