新材料在两个方面至关重要。一方面,它们推动了文明的颠覆性飞跃。例如,早期的陶瓷用于陶器、青铜用于农业、钢材用于机械、水泥用于建筑、铝用于航空、钛用于宇宙飞船、稀土元素用于磁铁、半导体用于计算机芯片、铂族金属用于催化剂以及聚合物用于包装和医药。另一方面,材料生产是温室气体排放、能源消耗和环境污染的最大单一来源,这一事实迫使我们彻底重新思考生产、使用和回收材料的方式 1、2。材料不断改进的动力导致其化学复杂性更高,因为性能的改善通常需要通过调整成分来调整内在的和微观结构主导的特征。例如,超级合金中化学微调的金属间相 3 – 5、高性能铝合金中复杂的沉淀路径 6 – 8 或先进磁体中的界面 9、10。另一个挑战是微电子中多种元素的近原子级混合,其中产品和材料之间的界限变得模糊,例如半导体制造中的 2 纳米工艺。这两种趋势都提高了材料的成分复杂性和高度集成的系统:它们是高级产品性能的先决条件,并为新的固态现象打开了大门 11-14。然而,化学从不孤单:材料的成分复杂性转化为其微观结构 15。化学成分的变化会影响许多缺陷特征,通常具有指数依赖性:例子包括溶质装饰状态和缺陷能量的变化、作用于它们的拖拽力以及缺陷处新相的形成。这意味着化学复杂性的变化与微观结构复杂性的变化有关。后者很重要,因为材料实际上从未在其热力学平衡状态下使用,而是在瞬态下使用,具有复杂的微观结构
主要关键词